Sains Malaysiana 46(2)(2017):
239–244
http://dx.doi.org/10.17576/jsm-2017-4602-08
Protein-Sparing Ability of Carbohydrates
from Different Sources in Diets for Fry of Stinging Catfish Heteropneustes
fossilis
(Keupayaan Jimat Protein Karbohidrat daripada
Sumber Berbeza dalam Diet untuk Anak Keli Stinging Heteropneustes
fossilis)
MOHAMMAD LUTFAR
RAHMAN1*,
MOHAMMAD
ABDUS
SALAM2,
MD.
EMRANUL
AHSAN3,
MD.
SHAKHAWATE
HOSSAIN4
& MD. ARMAN HOSSAIN5
1Department of Genetics & Fish
Breeding, Bangabandhu Sheikh MujiburRahman Agricultural University,
Gazipur-1706, Bangladesh
2Department of Genetics
& Fish Breeding, Bangabandhu Sheikh MujiburRahman Agricultural
University, Gazipur-1706, Bangladesh
3Department of Fisheries
Management, Bangabandhu Sheikh MujiburRahman Agricultural University
Gazipur-1706,
Bangladesh
4Department of Fisheries
Biology and Aquatic Environment, Bangabandhu Sheikh MujiburRahman
Agricultural University, Gazipur-1706, Bangladesh
5Department of Aquaculture,
Bangabandhu Sheikh MujiburRahman Agricultural University
Gazipur-1706, Bangladesh
Diserahkan: 6 Disember
2015/Diterima: 10 Mei 2016
ABSTRACT
The experiments were carried
out to evaluate the protein-sparing effect in Heteropneustes
fossilis fry (0.751 ± 0.01 g) fed for 90 days with six isocaloric
diets containing 45, 40 or 35% of casein-protein and 25, 30 or
35% of glucose/dextrin, combined properly as the work purpose.
The highest weight gain was recorded in fry fed with 35% dextrin
and 35% crude protein level. Interestingly, the value of SGR (2.950±0.017) and PER
(1.793±0.03) were significantly (p<0.05)
increased with reducing protein level from 45 to 35% and with
increasing carbohydrate level from 25% to 35%, respectively. However,
the poorest growth was recorded in the fry fed with glucose containing
diets than dextrin-containing diets. Protein deposition was significantly
(p<0.05) lower in fry fed with the glucose diets at
the protein level of 45% than those fed with 40 or 35%, indicating
that H. fossilis utilize dextrin easily than glucose. Increase
of dextrin content from 35 to 45% did not reduce (p<0.05)
the weight gain, even reducing the dietary protein from 45 to
35%. This fact suggests that carbohydrate spare protein by using
dextrin as energy source.
Keywords: Dextrin; glucose;
nutrition; Heteropneustes fossilis; sparing effect
ABSTRAK
Kajian telah dijalankan untuk
menilai kesan jimat protein dalam pemakanan anak ikan Heteropneustes
fossilis (0.751 ± 0.01 g) selama 90 hari dengan enam diet isokalori
yang mengandungi 45, 40 atau 35% daripada protein kasein dan 25,
30 atau 35% daripada glukosa/dekstrin, digabungkan dengan betul
sebagai tujuan kerja. Kenaikan berat badan tertinggi direkodkan
dalam pemakanan anak ikan dengan tahap 35% dekstrin dan 35% protein
kasar. Menariknya, nilai SGR (2.950±0.017)
dan PER (1.793±0.03) masing-masing meningkat secara bererti
(p<0.05) dengan pengurangan tahap protein daripada 45
kepada 35% dan peningkatan tahap karbohidrat daripada 25 kepada
35%. Walau bagaimanapun, pertumbuhan lemah direkod untuk pemakanan
anak ikan dengan diet yang mengandungi glukosa daripada diet yang
mengandungi dekstrin. Pemendapan protein adalah ketara lebih rendah
(p<0.05) dalam anak ikan yang diberi makan dengan diet
glukosa pada tahap protein 45% berbanding 40% atau 35% yang menunjukkan
bahawa H. fossilis menggunakan dekstrin lebih mudah berbanding
glukosa. Peningkatan kandungan dekstrin daripada 35 kepada 45%
pula tidak mengurangkan (p<0.05) pertambahan berat badan,
malah mengurangkan diet protein daripada 45 kepada 35%. Fakta
ini menunjukkan bahawa karbohidrat jimat protein dengan menggunakan
dekstrin sebagai sumber tenaga.
Kata kunci: Dekstrin; glukosa pemakanan; Heteropneustes fossilis;
kesan jimat
RUJUKAN
Akand, A.M., Miah, M.I. & Haque, M.M. 1989. Effect of dietary
protein level on growth, feed conversion and body composition
of shingi (Heteropneustes fossilis Bloch). Aquaculture
77(2-3):
175-180. DOI: 10.1016/0044- 8486(89)90200-7.
AOAC. 1984. Official
Methods of Analysis. 14th ed. Association of Official Analytical
Chemists. Arlington, VA. p. 1141.
Bhatt, V.S. 1968.
Studies on the biology of some fresh water fishes. Part -VII.
H. fossilis (Bloch). Indian Journal of Fisheries 5(1-2):
99-115.
Cho, C.Y. &
Kaushik, S.J. 1990. Nutrition energetics in fish: Energy and protein
utilization in rainbow trout (Salmo gairdneri). World Review
of Nutrition and Dietetics 6: 132- 172.
Das, M., Dewan,
S. & Debnath, S.C. 1989. Studies on fecundity of Heteropneustes
fossilis (Bloch) in a minipond of Bangladesh Agricultural
University, Mymensingh. Bangladesh. Agricultural Science 16(1):
1-6.
Degani, G. 1987.
The influence of the relative proportions of dietary protein and
carbohydrate on body weight gain, nitrogen retention and feed
conversion of European eels. Anguilla Anguilla. L. Aquaculture
Research 18(2): 151-158.
Erfanullah &
Jafri, A.K. 1995. Protein-sparing effect of dietary carbohydrate
in diets for fingerling Labeo rohita. Aquaculture 136:
331-339. DOI: http://dx.doi.org/10.1016/0044- 8486(95), 00056-9.
Furuichi, M. &
Yone, Y. 1982. Availability of carbohydrate in nutrition of carp
and red seabream. Bulletin of the Japanese Society for the
Science of Fish 48: 945-948.
Garling, D.L. &
Wilson, R.P. 1976. Optimum dietary protein to energy ratio for
channel catfish fingerlings Ictalurus punctatus. Journal
of Nutrition 106: 1368-1375.
Hidalgo, M.C.,
Sanz, A., Garcia Gallego, M., Saurez, M.D. & de la Higuera,
M. 1993. Feeding of the European eel Anguilla anguilla.
I. Influence of dietary carbohydrate level. Comparative Biochemistry
and Physiology 105(A): 165-169. DOI: 10.1016/0300-9629(93)90190-F.
Halver, J.E. 1976.
Nutritional deficiency diseases in salmonids. Fish Pathology
10: 165-180. DOI: http://doi.org/10.3147/ jsfp.10.165.
Hilton, J.W. &
Atkinson, J.L. 1982. Response of rainbow trout (Salmo gairdneri)
to increased levels of available carbohydrate in practical trout
diets. British Journal of Nutrition 47: 597- 607. DOI:
http://dx.doi.org/10.1079/BJN19820071.
Khan, M.A. &
Abidi, S.F. 2011. Dietary arginine requirement of Heteropneustes
fossilis fry (Bloch) based on growth, nutrient retention and
haematological parameters. Aquaculture Nutrition 17(4):
418-428. DOI: 10.1111/j.1365- 2095.2010.00819.x
Mia, G.K. 1984.
Length-weight relationship and condition factor in the air-breathing
catfish, Heteropneustus fosilis (Bloch). Bangladesh
Journal of Zoology 12(1): 49-52.
Mohanta, K.N.,
Mohanty, S.N. & Jena, J.K. 2007. Protein sparing effect of
carbohydrate in silver barb, Puntius gonionotus fry. Aquaculture
Nutrition 13: 311-317. DOI: 10.1111/j.1365- 2095.2007.00482.x
Mollah, M.F.A.
& Alam, M.S. 1990. Effects of different levels of dietary
carbohydrate on growth and feed utilization of catfish (Clarias
batrachus L.) fry. Indian Journal of Fisheries 37(3):
243-249.
Narejo, N.T., Salam,
M.A., Sabur, M.A. & Rahmatullah, S.M. 2005. Effect of stocking
density on growth and survival of indigenous catfish, Heteropneustes
fossilis (Bloch) reared in cemented cistern fed on formulated
feed. Pakistan Journal of Zoology 37(1): 49-52.
National Research
Council (NRC). 1993. Nutrient Requirement of Fish. Committee
on Animal Nutrition. Board on Agriculture. National Academy of
Sciences. Washington: National Academy Press. p. 114.
National Research
Council (NRC). 1983. Nutrient Requirements of Warmwater Fishes
and Shellfishes. Washington: National Academy of Sciences.
p. 102.
Orire, A.M. &
Sadiku, S.O.E. 2014. Effect of carbohydrate sources on the growth
and body compositions of African catfish (Clarias gariepinus).
International Journal of Fisheries and Aquaculture 6(5):
55-61.
Page, J.W. &
Andrews, J.W. 1973. Interactions of dietary levels of protein
and energy on channel catfish (Ictulurus punctatus). Journal
of Nutrition 103: 1339-1346.
Pieper, A. &
Pfeffer, E. 1980. Studies on the comparative efficiency of utilization
of gross energy from some carbohydrates, proteins and fats by
rainbow trout (Salmo gairdneri, R.). Aquaculture 20(4):
323-332. DOI: 10.1016/0044- 8486(80)90093-9.
Singh, R.K., Balange,
A.K. & Ghughuskar, M.M. 2006. Protein sparing effect of carbohydrates
in the diet of Cirrhinus mrigala (Hamilton, 1822) fry.
Aquaculture 258: 680-684. DOI: 10.1016/j.aquaculture.2006.03.049.
Shiau, S.Y. &
Peng, C.Y. 1993. Protein sparing effect of carbohydrates in diets
for tilapia, Oreochromis niloticus×O. aureus. Aquaculture 117:
327-334. DOI: 10.1016/0044- 8486(93)90329-W
Stone, D.A.J.,
Allan, G.L. & Anderson, A.J. 2003. Carbohydrate utilization
by juvenile silver perch, Bidyanus bidyanus (Mitchell).
III. The protein-sparing effect of wheat starch-based carbohydrates.
Aquaculture Research 34(2): 123-134. DOI: 10.1046/j.1365-2109.2003.00774.x
Takeuchi, T., Watanabe,
T. & Ogino, C. 1979. Optimum ratio of energy to protein for
carp. Bulletin of the Japanese Society for the Science of Fish
45: 983-987.
Tung, P.H. &
Shiau, S.Y. 1991. Effects of meal frequency on growth performance
of hybrid tilapia, Oreochromis niloticus×O. aureus, fed
different carbohydrate diets. Aquaculture 92: 343-350.
DOI: 10.1016/0044-8486(91)90039-A.
Wilson, R.P. &
Halver, J.E. 1986. Protein and amino acid requirements of fishes.
Annual Review of Nutrition 6: 225- 244. DOI: 10.1146/annurev.nu.06.070186.001301.
Wilson, R.P. 1994.
Utilization of dietary carbohydrate by fish. Aquaculture 124:
67-80. DOI: 10.1016/0044-8486(94)90363- 8.
Watanabe, T., Takeuchi,
T., Satoh, S., Ida, T. & Yaguchi, M. 1987. Development of
low protein high-energy diets for practical carp culture with
special reference to reduction of total nitrogen excretion. Bulletin
of the Japanese Society for the Science of Fish 53: 1413-1423.
Zar, J.H. 1999.
Biostatistical Analysis. 4th ed. Upper Saddle River, New
Jersey: Prentice-Hall Inc. p. 931.
Zhou, C., Ge, X.,
Liu, B., Xie, J., Chen, R. & Ren, M. 2015. Effect of high
dietary carbohydrate on the growth performance, blood chemistry,
hepatic enzyme activities and growth hormone gene expression of
Wuchang Bream (Megalobrama amblycephala) at two temperatures.
Asian- Australasian Journal of Animal Sciences 28(2): 207-214.
DOI: 10.5713/ajas.13.0705.
*Pengarang untuk surat-menyurat; email:
mlrahman@bsmrau.edu.bd