Sains Malaysiana 46(2)(2017):
285–293
http://dx.doi.org/10.17576/jsm-2017-4602-13
Effects of Debinding and Sintering
Atmosphere on Properties and Corrosion Resistance of Powder Injection
Molded 316 L - Stainless Steel
(Kesan Pengikatan dan Pensinteran ke atas
Sifat dan Rintangan Kakisan Acuan Suntikan Serbuk 316 L - Keluli
Tahan Karat)
MUHAMMAD
RAFI
RAZA1*,
FAIZ
AHMAD2,
NORHAMIDI
MUHAMAD3,
ABU
BAKAR
SULONG3,
M.A.
OMAR4,
MAJID NIAZ
AKHTAR5,
MUHAMMAD
ASLAM
& IRFAN
SHERAZI1
1Department of Mechanical Engineering,
COMSATS Institute of Information Technology Sahiwal
Pakistan
2Department of Mechanical Engineering,
Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak
Darul Ridzuan, Malaysia
3Department of Mechanical and Materials
Engineering, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
4Advanced Materials Research Centre
(AMREC) SIRIM, Kulim Hi-Tech Park, 09000 Kulim, Kedah Darul Aman,
Malaysia
5Department of Physics, COMSATS Institute
of Information Technology Lahore, Pakistan
Diserahkan: 13 Jun 2015/Diterima:
11 Mei 2016
ABSTRACT
316L stainless steel is a common
biomedical material. Currently, biomedical parts are produced
through powder injection molding (PIM). Carbon control is the most critical
in PIM. Improper debinding can significantly change the properties
of the final product. In this work, thermal debinding and sintering
were performed in two different furnaces (i.e. laboratory and
commercially available furnaces) to study the mechanical properties
and corrosion resistance. Debounded samples were sintered in different
atmospheres. The samples sintered in inert gas showed enhanced
mechanical properties compared with wrought 316L stainless steel
and higher corrosion rate than those sintered in the vacuum furnace.
The densification and tensile strength of the hydrogen sintered
samples increased up to 3% and 51%, respectively, compared with
those of the vacuum-sintered samples. However, the samples sintered
in inert gas also exhibited reduced ductility and corrosion resistance.
This finding is attributed to the presence of residual carbon
in debonded samples during debinding.
Keywords: Corrosion resistance;
debinding; mechanical properties; powder injection molding; weight
loss method
ABSTRAK
Keluli tahan karat 316L adalah
bahan lazim bioperubatan. Pada masa ini, bahagian bioperubatan
dihasilkan melalui acuan suntikan serbuk (PIM).
Kawalan karbon adalah yang paling kritikal dalam PIM.
Pengikatan sumbang boleh mengubah sifat akhir produk. Dalam kertas
ini, pengikatan haba dan persinteran telah dijalankan di dua relau
berbeza (Makmal dan relau yang tersedia secara komersial) untuk
mengkaji sifat mekanik dan rintangan kakisan. Sampel terikat telah
disinter dalam atmosfera berbeza. Sampel yang disinter dalam gas
lengai yang menunjukkan peningkatan sifat mekanik berbanding dengan
keluli tahan karat tempaan 316L dan kadar kakisan yang lebih tinggi
berbanding yang disinter dalam vakum relau. Kepadatan dan kekuatan
tegangan sampel hidrogen yang disinter meningkat masing-masing
kepada 3% dan 51% berbanding dengan sampel yang disinter secara
vakum. Walau bagaimanapun, sampel yang disinter dalam gas lengai
juga menunjukkan pengurangan rintangan kemuluran dan kakisan.
Keputusan kajian ini adalah kerana sifat sisa karbon dalam sampel
ikatan semasa pengikatan.
Kata kunci: Acuan suntikan serbuk; kaedah kehilangan berat; rintangan
kakisan; pengikatan; sifat mekanik
RUJUKAN
Beachem,
C.D. 1972. A new model for hydrogen-assisted cracking (hydrogen
embrittlement). Metallurgical Transactions 3: 441-455.
Becker,
B.S., Boltom, J.D. & Eagles, A.M. 2000. Sintering of 316L
stainless steels to high density via the addition of chromium-molybdenum
dibromide powders Part 1: Sintering performance and mechanical
properties. Proceedings of the Institution of Mechanical Engineers.
Part L, Journal of materials, design and applications, LHL. pp.
139-152.
Beebhas,
C., Mutsuddy, Ford, R.G. 1995. Ceramic Injection Molding. London:
Chapman & Hall.
Bostjan
Berginc, Zlatko Kampus & Borivoj Sustarsic. 2006. The influence
of MIM and sintering-process parameters on the mechanical properties
of 316L SS. Materiali in Tehnologije 40: 193-198.
Davis,
J.R. 1994. Stainless Steels. West Conshohocken, PA: ASTM
International.
Dewidar,
M.M., Yoon, H-C. & Lim, J.K. 2006. Mechanical properties of
metals for biomedical applications using powder metallurgy process:
A review. Metals and Materials 12: 193-206.
Eisenhüttenleute,
V.D. 1992. Steel - A Handbook for Materials Research and Engineering:
Volume 1: Fundamentals. 1st ed. New York: Springer.
Eliezer,
D. 1983. The behaviour of 316L stainless steel in hydrogen. Journal
of Materials Science 18: 1540-1547.
García,
C., Martín, F., Tiedr, P.d., Blanco, Y., Ruíz-Roman, J.M. &
Aparicio, M. 2008. Electrochemical reactivation methods applied
to PM austenitic stainless steels sintered in nitrogen-hydrogen
atmosphere. Corrosion Science 50: 687-697.
García, C., Martín, F., Tiedra, P.d. & Garcia Cambronero, L.
2007. Pitting corrosion behaviour of PM austenitic stainless steels
sintered in nitrogen-hydrogen atmosphere. Corrosion Science
49: 1718-1736.
German, R.M. & Bose, A. 1997.
Powder injection molding of metal and ceramics. In Metal Powder
Industries Federation. New Jersey: Princeton Press.
Hansen, D.C. 2008. Metal corrosion
in the human body: The ultimate bio-corrosion scenario. Electrochem.
Soc. Interface 17: 31-34.
Huang, B., Liang, S. & Qu, X.
2003. The rheology of metal injection molding. Journal of Materials
Processing Technology 137: 132-137.
Li, H.B., Jiang, Z.H., Cao, Y. &
Zhang, Z.R. 2009. Fabrication of high nitrogen austenitic stainless
steels with excellent mechanical and pitting corrosion properties.
International Journal of Minerals, Metallurgy and Materials
16: 387-392.
Li, Y., Liu, S., Qu, X. & Huang,
B. 2003. Thermal debinding processing of 316L stainless steel
powder injection molding compacts. Journal of Materials Processing
Technology 137: 65-69.
Jamaludin, K.R., Muhamad, N., Ab-Rahman,
M.N., M. Amin, S.Y., Ahmad, S., Ibrahim, M.H.I. 2009. Sintering
parameter optimization of the SS316L metal injection molding (MIM)
compacts for final density using taguchi method, 3rd South
East Asian Technical University Consortium, Johor Bahru, Malaysia,
pp. 258-262.
Ji, C.H., Loh, N.H., Khor, K.A.
& Tor, S.B. 2001. Sintering study of 316L stainless steel
metal injection molding parts using Taguchi method: Final density.
Materials Science and Engineering Vol. A (311): 74-82.
Khairur Rijal Jamaludin, Norhamidi
Muhamad, Mohd Nizam Ab Rahman, Sri Yulis M. Amin, Sufizar Ahmad,
Mohd Halim Irwan Ibrahim, Murtadhahadi & Nor Hafiez Mohamad
Nor. 2008. Densification of ss316l gas-atomized and water-atomized
powder compact, Seminar II - AMReG 08, Port Dickson. p.
8.
Kurgan, N. 2014. Effect of porosity
and density on the mechanical and microstructural properties of
sintered 316L stainless steel implant materials. Materials
& Design 55: 235-241.
Levenfeld, B., Varez, A. & Torralba,
J.M. 2002. Effect of residual carbon on the sintering process
of M2 high speed steel parts obtained by a modified metal injection
molding process. Metallurgical and Materials Transactions A
33: 1843-1851.
Li, C.X. & Bell, T. 2004. Corrosion
properties of active screen plasma nitrided 316 austenitic stainless
steel. Corrosion Science 46: 1527-1547.
Loh, N.H., Tor, S.B. & Khor,
K.A. 2001. Production of metal matrix composite part by powder
injection molding. J. Mat. Processing Tech. 108: 398-407.
Martin, F., García, C., Blanco,
Y. & Herranz, G. 2014. Influence of sinter-cooling rate on
intergranular corrosion of powder metallurgy superaustenitic stainless
steel. Corrosion Engineering, Science and Technology 49:
614-623.
Muhammad Ilman Hakimi Chua, Abu
Bakar Sulong, Mohd. Fazuri Abdullah & Muhamad, N. 2013. Optimization
of injection molding and solvent debinding parameters of stainless
steel powder (SS316L) based feedstock for metal injection molding.
Sains Malaysiana 42(12): 1743-1750.
Muhammad Rafi Raza, Faiz Ahmad,
Omar, M.A., German, R.M. & Ali S. Muhsan. 2013. Role of debinding
to control mechanical properties of powder injection molded 316L
stainless steel. Advanced Materials Research 699: 875-882.
Omar, M., Subuki, I., Abdullah,
N., Zainon, N.M. & Roslani, N. 2012. Processing of water-atomised
316L stainless steel powder using metal injection processes. Journal
of Engineering Science 8: 1-13.
Omar, M.A., Ibrahim, R., Sidik,
M.I., Mustapha, M. & Mohamad, M. 2003. Rapid debinding of
316L stainless steel injection moulded component. Journal of
Materials Processing Technology 140: 397-400.
Rafi Raza, M., Faiz Ahmad, Omar,
M.A. & German, R.M. 2012. Effects of cooling rate on mechanical
properties and corrosion resistance of vacuum sintered powder
injection molded 316 L stainless steel. Journal of Materials
Processing Technology 212: 164-170.
Raza, M.R., Ahmad, F., Muhamad,
N., Sulong, A.B., Omar, M., Akhtar, M.N. & Aslam, M. 2016.
Effects of solid loading and cooling rate on the mechanical properties
and corrosion behavior of powder injection molded 316 L stainless
steel. Powder Technology 289: 135-142.
Raza, M.R., Ahmad, F., Muhamad,
N., Sulong, A.B., Omar, M., Akhtar, M.N., Nazir, M.S., Muhsan,
A.S. & Aslam, M. 2015. Effects of Residual Carbon on Microstructure
and Surface Roughness of PIM 316L Stainless Steel, InCIEC 2014.
New York: Springer. pp. 927-935.
Raza, M.R., Ahmad, F., Omar, M.,
German, R. & Muhsan, A.S. 2012. Defect analysis of 316LSS
during the powder injection moulding process, defect and diffusion
forum. Trans Tech Publ. 329: 35-43.
Sobral, A.V.C., Ristow, Jr. W.,
Azambuja, D.S., Costa, I. & Franco, C.V. 2001. Potentiodynamic
tests and electrochemical impedance spectroscopy of injection
molded 316L steel in NaCl solution. Corrosion Science 43:
1019-1030.
Trepanier, C., Ramakrishna Venugopalan
& Pelton, A.R. 2000. Corrosion resistance and biocompatibility
of passivated NiTi. In Shape Memory Implants, edited by
Yahia, L. New York: Springer Berlin Heidelberg. pp. 35-45.
Zaky, M.T., Soliman, S. & Farag,
S. 2009. Influence of paraffin wax characteristics on the formulation
of wax-based binders and their debinding from green molded parts
using two comparative techniques. Journal of Materials Processing
Technology 209: 5981-5989.
Zlatkov, B.S., Griesmayer, E., Loibl,
H., Danninger, H. & Gierl, C. 2008. Recent advances in PIM
technology I. Science of Sintering 40: 79-88.
*Pengarang untuk surat-menyurat;
email: rafirazamalik@gmail.com