Sains Malaysiana 46(2)(2017): 295–302

http://dx.doi.org/10.17576/jsm-2017-4602-14

 

Electrochemical Corrosion Behaviour of Pb-free SAC 105 and SAC 305 Solder Alloys: A Comparative Study

(Perilaku Kakisan Elektrokimia Aloi Pateri Pb-free SAC 105 dan SAC 305: Suatu Kajian Perbandingan)

 

M. FAYEKA, A.S.M.A. HASEEB & M.A. FAZAL*

 

Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 17 September 2015/Accepted: 24 May 2016

 

ABSTRACT

Sn-Ag based solder alloy seems to be a promising lead-free solder for the application on electronic assembly. The corrosion behavior of different lead free solder alloys such as Sn-3.0Ag, Sn-1.0Ag-0.5Cu and Sn-3.0Ag-0.5Cu was investigated in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to characterize the samples after the tests. The results showed that the addition of 0.5 wt. % copper with Sn-3.0 Ag solder alloy led to a better corrosion resistance while lowering of Ag content from 3.0 to 1.0 wt. % decreased the resistance. Sn-3.0Ag-0.5Cu exhibits a better corrosion resistance in terms of increased charge transfer resistance and impedance values as well as the lowest capacitance. These characteristics signify its suitability for the application in electronic packaging.

 

Keywords: Corrosion; EIS; Pb-free solders; potentiodynamic polarization

 

ABSTRAK

Aloi pateri berasaskan Sn-Ag berpotensi menjadi pateri bebas-Pb untuk diaplikasikan sebagai pemasangan elektronik. Tindak balas kakisan aloi pateri bebas Pb yang berbeza seperti Sn-3.0Ag, Sn-1.0Ag-0.5Cu dan Sn-3.0Ag-0.5Cu dikaji dalam larutan 3.5% NaCl menggunakan upaya dinamik pengutuban dan spektroskopi impedans elektrokimia. Mikroskop imbasan elektron (SEM), spektroskopi sinar-X tenaga terserak (EDX) dan pembelauan sinar-X (XRD) telah digunakan untuk mencirikan sampel selepas ujian. Hasil kajian menunjukkan bahawa penambahan 0.5 %. bt tembaga ke dalam aloi pateri Sn-3.0Ag menghasilkan rintangan kakisan yang lebih baik. Manakala mengurangkan kandungan Ag daripada 3.0 kepada 1.0 %. bt, menurunkan rintangan. Sn-3.0Ag-0.5Cu menunjukkan kakisan yang lebih baik daripada segi peningkatan pemindahan cas rintangan dan nilai impedansi. Ia juga mempunyai kapasitans yang paling rendah. Ciri-ciri ini mencerminkan kesesuaian bahan ini dalam aplikasi pembungkusan elektronik.

 

Kata kunci: EIS; kakisan; pateri bebas Pb; upaya dinamik pengutuban

RUJUKAN

Abd El Rehim, Sayed S, Ayman M Zaky & Noble F Mohamed. 2006. Electrochemical behaviour of a tin electrode in tartaric acid solutions. Journal of Alloys and Compounds 424(1): 88-92.

Asaduzzaman, M.D., Chand Mustafa Mohammad & Islam Mayeedul. 2011. Effects of concentration of sodium chloride solution on the pitting corrosion behavior of AISI 304L austenitic stainless steel. Chemical Industry and Chemical Engineering Quarterly 17(4): 477-483.

Billah, Md Muktadir, Kazi Mohammad Shorowordi & Ahmed Sharif. 2014. Effect of micron size Ni particle addition in Sn-8Zn-3Bi lead-free solder alloy on the microstructure, thermal and mechanical properties. Journal of Alloys and Compounds 585(0): 32-39.

Brett, C.M.A. & Trandafir, F. 2004. The corrosion of dental amalgam in artificial salivas: An electrochemical impedance study. Journal of Electroanalytical Chemistry 572(2): 347- 354.

Díaz-Ballote, L., López-Sansores, J.F., Maldonado-López, L. & Garfias-Mesias, L.F. 2009. Corrosion behavior of aluminum exposed to a biodiesel. Electrochemistry Communications 11(1): 41-44.

El-Daly, A.A., El-Taher, A.M. & Gouda, S. 2015. Development of new multicomponent Sn-Ag-Cu-Bi lead-free solders for low-cost commercial electronic assembly. Journal of Alloys and Compounds 627(0): 268-275.

El-Daly, A.A. & Hammad, A.E. 2010. Effects of small addition of Ag and/or Cu on the microstructure and properties of Sn- 9Zn lead-free solders. Materials Science and Engineering: A 527(20): 5212-5219.

Fawzy, A., Fayek, S.A., Sobhy, M., Nassr, E., Mousa, M.M. & Saad, G. 2014. Tensile creep characteristics of Sn-3.5 Ag- 0.5 Cu (SAC355) solder reinforced with nano-metric ZnO particles. Materials Science and Engineering: A 603: 1-10.

Freitas, E.S., Osório, W.R., Spinelli, J.E. & Garcia, A. 2014. Mechanical and corrosion resistances of a Sn-0.7 wt. % Cu lead-free solder alloy. Microelectronics Reliability 54(6): 1392-1400.

Gao, Y-F., Cheng, C-Q., Zhao, J., Wang, L-H. & Li, X-G. 2012. Electrochemical corrosion of Sn-0.75 Cu solder joints in NaCl solution. Transactions of Nonferrous Metals Society of China 22(4): 977-982.

Kim, K.S., Huh, S.H. & Suganuma, K. 2003. Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints. Journal of Alloys and Compounds 352(1): 226-236.

Li, X., Zu, F., Gao, W., Cui, X., Wang, L. & Ding, G. 2012. Effects of the melt state on the microstructure of a Sn-3.5%Ag solder at different cooling rates. Applied Surface Science 258(15): 5677-5682.

Liu, M., Yang, W., Ma, Y., Tang, C., Tang, H. & Zhan, Y. 2015. The electrochemical corrosion behavior of Pb-free Sn-8.5 Zn- XCr solders in 3.5 wt. % NaCl solution. Materials Chemistry and Physics 168: 27-34.

Mohanty, U.S. & Lin, K-L. 2013. Corrosion behavior of Pb-free Sn-1Ag-0.5Cu-XNi solder alloys in 3.5% NaCl solution. Journal of Electronic Materials 42(4): 628-638.

Mohanty, U.S. & Lin, K-L. 2007a. Electrochemical corrosion study of Sn-XAg-0.5 Cu alloys in 3.5% NaCl solution. Journal of Materials Research 22(09): 2573-2581.

Mohanty, U.S. & Lin, K-L. 2007b. The polarization characteristics of Pb-free Sn-8.5 Zn-X Ag-0.1 Al–0.05 Ga alloy in 3.5% NaCl solution. Corrosion Science 49(7): 2815-2831.

Mohanty, U.S. & Lin, K-L. 2006. Effect of Al on the electrochemical corrosion behaviour of Pb free Sn-8.5 Zn- 0.5 Ag-XAl-0.5 Ga solder in 3.5% NaCl solution. Applied Surface Science 252(16): 5907-5916.

Mohanty, U.S. & Lin, K-L. 2005. Electrochemical corrosion behaviour of lead-free Sn-8.5 Zn-X Ag-0.1 Al-0.5 Ga solder in 3.5% NaCl solution. Materials Science and Engineering: A 406(1): 34-42.

Mohran, HossniaS, Abdel-Rahman El-Sayed & HanyM Abd El-Lateef. 2009. Anodic behavior of tin, indium, and tin– indium alloys in oxalic acid solution. Journal of Solid State Electrochemistry 13(8): 1279-1290.

Nazeri, Muhammad Firdaus Mohd & Ahmad Azmin Mohamad. 2016. Corrosion resistance of ternary Sn-9Zn-xIn solder joint in alkaline solution. Journal of Alloys and Compounds 661: 516-525.

Nazeri, Muhammad Firdaus Mohd & Ahmad Azmin Mohamad. 2014. Corrosion measurement of Sn-Zn lead-free solders in 6M KOH solution. Measurement 47(0): 820-826.

Okafor, P.C., Liu, X. & Zheng, Y.G. 2009. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2- saturated solution. Corrosion Science 51(4): 761-768.

Osório, W.R., Garcia, L.R., Peixoto, L.C. & Garcia, A. 2011. Electrochemical behavior of a lead-free SnAg solder alloy affected by the microstructure array. Materials & Design 32(10): 4763-4772.

Osório, W.R., Cremasco, A., Andrade, P.N., Garcia, A. & Caram, R. 2010. Electrochemical behavior of centrifuged cast and heat treated Ti-Cu alloys for medical applications. Electrochimica Acta 55(3): 759-770.

Raja, Pandian Bothi, Ahmad Kaleem Qureshi, Afidah Abdul Rahim, Hasnah Osman & Khalijah Awang. 2013. Neolamarckia cadamba alkaloids as eco-friendly corrosion inhibitors for mild steel in 1M HCl media. Corrosion Science 69: 292-301.

Rosalbino, F., Angelini, E., Zanicchi, G., Carlini, R. & Marazza, R. 2009. Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution. Electrochimica Acta 54(28): 7231-7235.

Rosalbino, F., Angelini, E., Zanicchi, G. & Marazza, R. 2008. Corrosion behaviour assessment of lead-free Sn-Ag-M (M= In, Bi, Cu) solder alloys. Materials Chemistry and Physics 109(2): 386-391.

Hirokazu Tanaka, Fumitaka Ueta, Sachio Yoshihara & Takashi Shirakashi. 2001. Effects of reflow processing and flux residue on ionic migration of lead-free solder plating using the quartz crystal microbalance method. Materials Transactions 42(9): 2003-2007.

Wang, M., Wang, J., Feng, H. & Ke, W. 2012. Effect of Ag3Sn intermetallic compounds on corrosion of Sn-3.0 Ag-0.5 Cu solder under high-temperature and high-humidity condition. Corrosion Science 63: 20-28.

Witte, F., Fischer, J., Nellesen, J., Crostack, H-A., Kaese, V., Pisch, A., Beckmann, F. & Windhagen, H. 2006. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27(7): 1013-1018.

Wu, C.M.L., Huang, M.L., Lai, J.K.L. & Chan, Y.C. 2000. Developing a lead-free solder alloy Sn-Bi-Ag-Cu by mechanical alloying. Journal of Electronic Materials 29(8): 1015-1020.

Yeh, M.S. 2003. Effects of indium on the mechanical properties of ternary Sn-In-Ag solders. Metallurgical and Materials Transactions A 34(2): 361-365.

Yuan, S.J., Choong, A.M.F. & Pehkonen, S.O. 2007. The influence of the marine aerobic Pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corrosion Science 49(12): 4352-4385.

 

*Pengarang untuk surat-menyurat; email: fazal@um.edu.my

 

 

 

 

 

 

sebelumnya