Sains Malaysiana 46(3)(2017): 387–392

http://dx.doi.org/10.17576/jsm-2017-4603-05

 

Geochemistry of Trace Elements as One of the Important Coal Quality Parameter: An Example from Balingian Coal, Malaysia

(Geokimia Unsur Surih Sebagai Salah Satu Parameter Penting dalam Kualiti Arang Batu:

Contoh dari Arang Batu Balingian, Malaysia)

 

 

SAY-GEE SIA1,2* & WAN HASIAH ABDULLAH1

 

1Geology Department, University of Malaya, 50603 Kuala Lumpur, Federal Territory

Malaysia

 

2Minerals and Geoscience Department Malaysia, 20th Floor, Tabung Haji Building,

Jalan Tun Razak, 50658 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 4 April 2016/Diterima: 22 Julai 2016

 

 

ABSTRACT

Ash and sulphur are the two main variables that influence coal quality and are therefore very important contractual parameters in a coal supply agreement. Coal which is low in ash yield and sulphur content is considered as 'cleaned coal'. Nonetheless, combustion of coal is also known to release toxic trace elements, which are known or suspected to be carcinogenic and may also cause respiratory problems, pregnancy complications, premature mortality and possibly a wide range of health problems. The two traditionally used coal quality parameters have proven to be insufficient for defining 'cleaned coal'. This is evidenced by the low ash and low sulphur Balingian coals that is seen as relatively safe in environmental terms, but still contains high concentrations of potentially hazardous trace elements which may pose health and environmental threats during coal combustion. Therefore, a comprehensive assessment of coal quality should also include information on concentration, spatial distribution and modes of occurrence of trace elements, particularly the 15 potentially hazardous trace elements identified by the United States Clean Air Act Amendments (1990).

 

Keywords: Ash; coal; potentially hazardous trace elements; sulphur

 

ABSTRAK

Abu dan sulfur adalah dua pemboleh ubah utama yang mempengaruhi kualiti arang batu. Ia merupakan parameter kontrak yang amat penting dalam perjanjian bekalan arang batu. arang batu yang rendah dalam kandungan abu dan kandungan sulfur dianggap sebagai 'arang batu bersih'. Walau bagaimanapun, pembakaran arang batu juga diketahui melepaskan unsur-unsur surih toksik, yang diketahui atau disyaki karsinogen dan juga boleh menyebabkan masalah pernafasan, komplikasi kehamilan, kematian pra-matang dan juga pelbagai masalah kesihatan. Kedua-dua parameter kualiti arang batu yang digunakan secara tradisi telah terbukti tidak mencukupi untuk menentukan 'arang batu bersih'. Ini telah terbukti dengan arang batu Balingian yang mengandungi abu dan sulfur yang rendah dan dilihat sebagai selamat daripada segi alam sekitar, tetapi ia mengandungi kandungan tinggi unsur surih yang berpotensi merbahaya yang boleh menimbulkan masalah kesihatan dan ancaman alam sekitar semasa pembakaran arang batu. Oleh itu, penilaian menyeluruh kualiti arang batu juga perlu memasukkan maklumat mengenai kepekatan, taburan dan mod kehadiran unsur-unsur surih, terutamanya 15 unsur surih yang berpotensi merbahaya yang telah dikenal pasti oleh Akta Udara Bersih Pindaan Amerika Syarikat (1990).

 

Kata kunci: Abu; arang; sulfur; unsur surih berpotensi bahaya

RUJUKAN

Alto, P. 1998. Assessment of Coal Cleaning for Trace Element Control. EPRI, TR-111852. p. 110.

Baruah, M.K., Kotoky, P., Baruah, J. & Bora, G.C. 2005. Extent of lead in high sulphur Assam coals. Fuel Process. Technol. 86: 731-734.

Clarke, L.B. & Sloss, L.L. 1992. Trace Elements - Emissions from the Coal Combustion and Gasification. London: IEA publication. p. 111.

Dai, S., Ren, D., Chou, C., Finkelman, R.B., Seredin, V.V. & Zhou, Y. 2012. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 94: 3-21.

Dai, S., Zhou, Y., Zhang, M., Wang, X., Wang, J., Song, X., Jiang, Y., Luo, Y., Song, Z., Yang, Z. & Ren, D. 2010. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 83: 55-63.

Dai, S., Ren, D., Tang, Y.G., Yue, M. & Hao, L.M. 2005. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 61: 119-137.

Diehl, S.F., Goldhaber, M.B., Koenig, A.E., Lowers, H.A. & Ruppert, L.F. 2012. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: Evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 94: 238-249.

Ding, Z., Zheng, B., Long, J., Belkin, H.E., Finkelman, R.B., Chen, C., Zhou, D. & Zhou, Y. 2001. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl. Geochem. 16: 1353-1360.

Finkelman, R.B. 1993. Trace and minor elements in coal. In Organic Geochemistry, edited by Engel, M.H. & Macko, S.A. New York: Plenum Press. pp. 593-607.

Finkelman, R.B. 1994. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process. Technol. 39: 21-34.

Finkelman, R.B. 1995. Modes of occurrence of environmentally sensitive trace elements in coal. In Environmental Aspects of Trace Elements in Coal, edited by Swaine, D.W. & Goodarzi, F. Dordrecht: Kluwer Academic Publishers. pp. 24-50.

Finkelman, R.B. & Bunnell, J.E. 2003. Short Course A. Health Impacts of Coal: Should We Be Concerned? Arlington: The Society for Organic Petrology. pp. 1-57.

Finkelman, R.B. & Gross, P.M.K. 1999. The types of data needed for assessing the environmental and human health impacts of coal. Int. J. Coal Geol. 40: 91-101.

Finkelman, R.B., Belkin, H.E. & Zheng, B. 1999. Health impacts of domestic coal use in China. Proceedings of the National Academy of Sciences of the United States of America 96(7): 3427-3431.

Frankenberger Jr., W.T. & Engberg, R.A. 1998. Environmental Chemistry of Selenium. New York: Marcel Dekker. Inc.

Fuge, R. 2005. Anthropogenic Sources. In Essentials of Medical Geology, Impacts of the Natural Environment on Public Health, edited by Selinus, O., Alloway, B., Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U. & Smedley, P. New York: Elsevier Academic Press. pp. 43-60.

Gürdal, G. 2011. Abundances and modes of occurrence of trace elements in the Çan coals (Miocene), Çanakkale-Turkey. Int. J. Coal Geol. 87: 157-173.

Gürdal, G. 2008. Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. Int. J. Coal Geol. 74: 28-40.

Huang, Y., Jin, B., Zhong, Z., Xiao, R., Tang, Z. & Ren, H. 2004. Trace elements (Mn, Cr, Pb, Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel Process. Technol. 86: 23-32.

Huggins, F.E. 2002. Overview of analytical methods for inorganic constituents in coal. Int. J. Coal Geol. 50: 169-214.

Keegan, T.J., Farago, M.E., Thornton, I., Hong, B., Colvile, R.N., Pesch, B., Jakubis, P. & Nieuwenhuijsen, M.J. 2006. Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Sci. Total Envir. 358: 61-71.

Ketris, M.P. & Yudovich, Ya.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 78: 135-148.

Liechti, P., Roe, F.W. & Haile, N.S. 1960. The Geology of Sarawak, Brunei and the Western Part of North Borneo. British Territories in Borneo: Geological Survey Dept. p. 360.

Liu, G., Yang, P., Peng, Z. & Chou, C.L. 2004. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China. J. Asian Earth Sci. 23: 491-506.

Liu, G.J., Zheng, L.G., Gao, L.F., Zhang, H.Y. & Peng, Z.C. 2005. The characterization of coal quality from the Jining coalfield. Energy 30: 1903-1914.

Miller, B.G. 2011. Clean Coal Engineering Technology. New York: Elsevier Inc. p. 696.

Querol, X., Fernandes-Turiel, J.L. & Lopez-Soler, A. 1995. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74: 331-343.

Raask, E. 1985b. The mode of occurrence and concentration of trace elements in coal. Prog. Energy Combust. Sci. 11: 97-118.

Radenovic, A. 2006. Inorganic constituents in coal. Kem. Ind. 55: 65-77.

Ren, D., Zhao, F., Wang, Y. & Yang, S. 1999. Distributions of minor and trace elements in Chinese coals. Int. J. Coal Geol. 40: 109-118.

Seredin, V.V. & Finkelman, R.B. 2008. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 76: 253-289.

Swaine, D.J. & Goodarzi, F. 1995. Environmental Aspects of Trace Elements in Coal. Dordrecht: Kluwer Academic Publishers. p. 312.

Swaine, D.J. 1990. Trace Elements in Coal. Sydney: Butterworths. p. 278.

Sia, S.G. & Abdullah, W.H. 2012a. Enrichment of arsenic, lead, and antimony in Balingian coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning behaviour during coal combustion. Int. J. Coal Geol. 101: 1-15.

Sia, S.G. & Abdullah, W.H. 2012b. Geochemical and petrographical characteristics of low-rank Balingian coal

from Sarawak, Malaysia: Its implications on depositional conditions and thermal maturity. Int. J. Coal Geol. 96-97: 22-38.

Schweinfurth, S.P. 2003. Coal - A Complex Natural Resource, An overview of Factors Affecting Coal Quality and Use in the United States. U.S. Geological Survey Circular 1143. p. 39.

Spears, D.A. & Zheng, Y. 1999. Geochemistry and origin of elements in some UK coals. Int. J. Coal Geol. 38: 161-179.

Stach, E., Mackowsky, M-Th., Taylor, G.H., Chandra, D., Teichmüller, M. & Teichmüller, R. 1982. Coal Petrology (3 ed). Borntraeger, Berlin and Stuttgard: Gebrüder. p. 535.

Suárez-Ruiz, I. & Ward, C.R. 2008. Basic factors controlling coal quality and technological behavior of coal. In Applied Coal Petrology - The Role of Petrology in Coal Utilization, edited by Suárez-Ruiz, I. and Crelling, J.C. New York: Academic Press. pp. 19-59.

Sun, R., Liu, G., Zheng, L. & Chou, C.L. 2010. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int. J. Coal Geol. 81: 81-96.

Tang, J., Xiao, T., Wang, S., Lei, J., Zhang, M., Gong, Y., Li, H., Ning, Z. & He, L. 2009. High cadmium concentrations in areas with endemic fluorosis: A serious hidden toxin? Chemosphere 76: 300-305.

Tewalt, S.J., Bragg, L.J. & Finkelman, R.B. 2001. Mercury in U.S. Coal - Abundance, distribution, and modes of occurrence. USGS Fact Sheet FS-095-01. p. 4.

Thornton, I., Farago, M.E., Keegan, T., Nieuwenhuijsen, M.J., Colvile, R.N., Pesch, B., Ranft, U., Miskovic, P., Jakubis, P. & EXPASCAN study group. 2003. Environmental impacts, exposure assessment and health effects related to arsenic emissions from a coal-fired power plant in Central Slovakia; the EXPASCAN Study. Arsenic Exposure and Health Effects V. pp. 39-49.

US Public Law. 1990. Clean Air Act Amendments of 1990. Public Law 101-549. p. 441.

US EPA (US Environmental Protection Agency) 2000. The Clean Air Act.

Vassilev, S.V. & Braekman-Danheux, C. 1999. Characterization of refuse-derived char from municipal solid waste 2. Occurrence, abundance and source of trace elements. Fuel Process. Technol. 59: 135-161.

Vassilev, S.V. & Vassileva, C.G. 1996. Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process. Technol. 48: 85-106.

Vejahati, F., Xu, Z. & Gupta, R. 2010. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization - A review. Fuel 89: 904-911.

Wang, W., Qin, Y., Wang, J., Li, J. & Weiss, D.J. 2010. A preliminary method for determining acceptable trace element levels in coal. Energy 35: 70-76.

Ward, C.R. 2002. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 50: 135-168.

Wolfenden, E.B. 1960. The Geology and Mineral Resources of the Lower Rajang Valley and Adjoining Areas, Sarawak. Memoir 11, Geological Survey of British Borneo. p. 167.

Zhang, J., Ren, D., Zheng, C., Zeng, R., Chou, C. & Liu, J. 2002. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China. Int. J. Coal Geol. 53: 55-64.

Zhao, Y., Zhang, J., Huang, W., Wang, Z., Li, Y., Song, D., Zhao, F. & Zheng, C. 2008. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China. Energ. Conv. Manage. 49: 615-624.

Zheng, B., Ding, Z., Huang, R., Zhu, J., Yu, X., Wang, A., Zhou, D., Mao, D. & Su, H. 1999. Issues of health and disease relating to coal use in southwestern China. Int. J. Coal Geol. 40: 119-132.

 

 

*Pengarang untuk surat-menyurat; email: siasg@siswa.um.edu.my

 

 

sebelumnya