Sains Malaysiana 46(3)(2017): 387–392
http://dx.doi.org/10.17576/jsm-2017-4603-05
Geochemistry of Trace Elements as One of
the Important Coal Quality Parameter: An Example from Balingian Coal, Malaysia
(Geokimia Unsur Surih Sebagai Salah Satu Parameter
Penting dalam Kualiti Arang Batu:
Contoh dari Arang Batu Balingian, Malaysia)
SAY-GEE SIA1,2* & WAN HASIAH ABDULLAH1
1Geology Department,
University of Malaya, 50603 Kuala Lumpur, Federal Territory
Malaysia
2Minerals and Geoscience
Department Malaysia, 20th Floor, Tabung Haji Building,
Jalan Tun Razak, 50658
Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 4 April
2016/Diterima: 22 Julai 2016
ABSTRACT
Ash and sulphur are the two main variables
that influence coal quality and are therefore very important contractual
parameters in a coal supply agreement. Coal which is low in ash
yield and sulphur content is considered as 'cleaned coal'. Nonetheless,
combustion of coal is also known to release toxic trace elements,
which are known or suspected to be carcinogenic and may also cause
respiratory problems, pregnancy complications, premature mortality
and possibly a wide range of health problems. The two traditionally
used coal quality parameters have proven to be insufficient for
defining 'cleaned coal'. This is evidenced by the low ash and low
sulphur Balingian coals that is seen as relatively safe in environmental
terms, but still contains high concentrations of potentially hazardous
trace elements which may pose health and environmental threats during
coal combustion. Therefore, a comprehensive assessment of coal quality
should also include information on concentration, spatial distribution
and modes of occurrence of trace elements, particularly the 15 potentially
hazardous trace elements identified by the United States Clean Air
Act Amendments (1990).
Keywords: Ash; coal; potentially
hazardous trace elements; sulphur
ABSTRAK
Abu dan sulfur adalah dua pemboleh
ubah utama yang mempengaruhi kualiti arang batu. Ia merupakan parameter
kontrak yang amat penting dalam perjanjian bekalan arang batu. arang
batu yang rendah dalam kandungan abu dan kandungan sulfur dianggap
sebagai 'arang batu bersih'. Walau bagaimanapun, pembakaran arang
batu juga diketahui melepaskan unsur-unsur surih toksik, yang diketahui
atau disyaki karsinogen dan juga boleh menyebabkan masalah pernafasan,
komplikasi kehamilan, kematian pra-matang dan juga pelbagai masalah
kesihatan. Kedua-dua parameter kualiti arang batu yang digunakan
secara tradisi telah terbukti tidak mencukupi untuk menentukan 'arang
batu bersih'. Ini telah terbukti dengan arang batu Balingian yang
mengandungi abu dan sulfur yang rendah dan dilihat sebagai selamat
daripada segi alam sekitar, tetapi ia mengandungi kandungan tinggi
unsur surih yang berpotensi merbahaya yang boleh menimbulkan masalah
kesihatan dan ancaman alam sekitar semasa pembakaran arang batu.
Oleh itu, penilaian menyeluruh kualiti arang batu juga perlu memasukkan
maklumat mengenai kepekatan, taburan dan mod kehadiran unsur-unsur
surih, terutamanya 15 unsur surih yang berpotensi merbahaya yang
telah dikenal pasti oleh Akta Udara Bersih Pindaan Amerika Syarikat
(1990).
Kata
kunci: Abu; arang; sulfur; unsur surih berpotensi bahaya
RUJUKAN
Alto, P. 1998. Assessment
of Coal Cleaning for Trace Element Control. EPRI, TR-111852. p. 110.
Baruah, M.K., Kotoky,
P., Baruah, J. & Bora, G.C. 2005. Extent of lead in high sulphur Assam
coals. Fuel Process. Technol. 86: 731-734.
Clarke, L.B. &
Sloss, L.L. 1992. Trace Elements - Emissions from the Coal Combustion and
Gasification. London: IEA publication. p. 111.
Dai, S., Ren, D., Chou,
C., Finkelman, R.B., Seredin, V.V. & Zhou, Y. 2012. Geochemistry of trace
elements in Chinese coals: A review of abundances, genetic types, impacts on
human health, and industrial utilization. Int. J. Coal Geol. 94: 3-21.
Dai, S., Zhou, Y.,
Zhang, M., Wang, X., Wang, J., Song, X., Jiang, Y., Luo, Y., Song, Z., Yang, Z.
& Ren, D. 2010. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in
the late Permian coal-bearing strata, eastern Yunnan, southwestern China:
Possible economic significance and genetic implications. Int. J. Coal Geol. 83:
55-63.
Dai, S., Ren, D., Tang,
Y.G., Yue, M. & Hao, L.M. 2005. Concentration and distribution of elements
in Late Permian coals from western Guizhou Province, China. Int. J. Coal
Geol. 61: 119-137.
Diehl, S.F., Goldhaber,
M.B., Koenig, A.E., Lowers, H.A. & Ruppert, L.F. 2012. Distribution of
arsenic, selenium, and other trace elements in high pyrite Appalachian coals:
Evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 94:
238-249.
Ding, Z., Zheng, B.,
Long, J., Belkin, H.E., Finkelman, R.B., Chen, C., Zhou, D. & Zhou, Y.
2001. Geological and geochemical characteristics of high arsenic coals from
endemic arsenosis areas in southwestern Guizhou Province, China. Appl.
Geochem. 16: 1353-1360.
Finkelman, R.B. 1993.
Trace and minor elements in coal. In Organic Geochemistry, edited by
Engel, M.H. & Macko, S.A. New York: Plenum Press. pp. 593-607.
Finkelman, R.B. 1994.
Modes of occurrence of potentially hazardous elements in coal: Levels of
confidence. Fuel Process. Technol. 39: 21-34.
Finkelman, R.B. 1995.
Modes of occurrence of environmentally sensitive trace elements in coal. In Environmental
Aspects of Trace Elements in Coal, edited by Swaine, D.W. & Goodarzi,
F. Dordrecht: Kluwer Academic Publishers. pp. 24-50.
Finkelman, R.B. &
Bunnell, J.E. 2003. Short Course A. Health Impacts of Coal: Should We Be
Concerned? Arlington: The Society for Organic Petrology. pp. 1-57.
Finkelman, R.B. &
Gross, P.M.K. 1999. The types of data needed for assessing the environmental
and human health impacts of coal. Int. J. Coal Geol. 40: 91-101.
Finkelman, R.B., Belkin,
H.E. & Zheng, B. 1999. Health impacts of domestic coal use in China. Proceedings
of the National Academy of Sciences of the United States of America 96(7):
3427-3431.
Frankenberger Jr., W.T.
& Engberg, R.A. 1998. Environmental Chemistry of Selenium. New York:
Marcel Dekker. Inc.
Fuge, R. 2005.
Anthropogenic Sources. In Essentials of Medical Geology, Impacts of the
Natural Environment on Public Health, edited by Selinus, O., Alloway, B.,
Centeno, J.A., Finkelman, R.B., Fuge, R., Lindh, U. & Smedley, P. New York:
Elsevier Academic Press. pp. 43-60.
Gürdal, G. 2011.
Abundances and modes of occurrence of trace elements in the Çan coals
(Miocene), Çanakkale-Turkey. Int. J. Coal Geol. 87: 157-173.
Gürdal, G. 2008.
Geochemistry of trace elements in Çan coal (Miocene), Çanakkale, Turkey. Int.
J. Coal Geol. 74: 28-40.
Huang, Y., Jin, B.,
Zhong, Z., Xiao, R., Tang, Z. & Ren, H. 2004. Trace elements (Mn, Cr, Pb,
Se, Zn, Cd and Hg) in emissions from a pulverized coal boiler. Fuel Process.
Technol. 86: 23-32.
Huggins, F.E. 2002.
Overview of analytical methods for inorganic constituents in coal. Int. J.
Coal Geol. 50: 169-214.
Keegan, T.J., Farago,
M.E., Thornton, I., Hong, B., Colvile, R.N., Pesch, B., Jakubis, P. &
Nieuwenhuijsen, M.J. 2006. Dispersion of As and selected heavy metals around a
coal-burning power station in central Slovakia. Sci. Total Envir. 358:
61-71.
Ketris, M.P. &
Yudovich, Ya.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World
averages for trace element contents in black shales and coals. Int. J. Coal
Geol. 78: 135-148.
Liechti, P., Roe, F.W.
& Haile, N.S. 1960. The Geology of Sarawak, Brunei and the Western Part
of North Borneo. British Territories in Borneo: Geological Survey Dept. p.
360.
Liu, G., Yang, P., Peng,
Z. & Chou, C.L. 2004. Petrographic and geochemical contrasts and
environmentally significant trace elements in marine-influenced coal seams,
Yanzhou mining area, China. J. Asian Earth Sci. 23: 491-506.
Liu, G.J., Zheng, L.G.,
Gao, L.F., Zhang, H.Y. & Peng, Z.C. 2005. The characterization of coal
quality from the Jining coalfield. Energy 30: 1903-1914.
Miller, B.G. 2011. Clean
Coal Engineering Technology. New York: Elsevier Inc. p. 696.
Querol, X.,
Fernandes-Turiel, J.L. & Lopez-Soler, A. 1995. Trace elements in coal and
their behaviour during combustion in a large power station. Fuel 74:
331-343.
Raask, E. 1985b. The
mode of occurrence and concentration of trace elements in coal. Prog. Energy
Combust. Sci. 11: 97-118.
Radenovic, A. 2006.
Inorganic constituents in coal. Kem. Ind. 55: 65-77.
Ren, D., Zhao, F., Wang,
Y. & Yang, S. 1999. Distributions of minor and trace elements in Chinese
coals. Int. J. Coal Geol. 40: 109-118.
Seredin, V.V. &
Finkelman, R.B. 2008. Metalliferous coals: A review of the main genetic and
geochemical types. Int. J. Coal Geol. 76: 253-289.
Swaine, D.J. &
Goodarzi, F. 1995. Environmental Aspects of Trace Elements in Coal.
Dordrecht: Kluwer Academic Publishers. p. 312.
Swaine, D.J. 1990. Trace
Elements in Coal. Sydney: Butterworths. p. 278.
Sia, S.G. &
Abdullah, W.H. 2012a. Enrichment of arsenic, lead, and antimony in Balingian
coal from Sarawak, Malaysia: Modes of occurrence, origin, and partitioning
behaviour during coal combustion. Int. J. Coal Geol. 101: 1-15.
Sia, S.G. & Abdullah,
W.H. 2012b. Geochemical and petrographical characteristics of low-rank
Balingian coal
from Sarawak, Malaysia: Its implications on depositional
conditions and thermal maturity. Int. J. Coal Geol. 96-97: 22-38.
Schweinfurth, S.P. 2003. Coal - A Complex Natural Resource, An overview of Factors Affecting Coal
Quality and Use in the United States. U.S. Geological Survey Circular 1143.
p. 39.
Spears, D.A. &
Zheng, Y. 1999. Geochemistry and origin of elements in some UK coals. Int.
J. Coal Geol. 38: 161-179.
Stach, E., Mackowsky,
M-Th., Taylor, G.H., Chandra, D., Teichmüller, M. & Teichmüller, R. 1982. Coal
Petrology (3 ed). Borntraeger, Berlin and Stuttgard: Gebrüder. p. 535.
Suárez-Ruiz, I. &
Ward, C.R. 2008. Basic factors controlling coal quality and technological
behavior of coal. In Applied Coal Petrology - The Role of Petrology in Coal
Utilization, edited by Suárez-Ruiz, I. and Crelling, J.C. New York:
Academic Press. pp. 19-59.
Sun, R., Liu, G., Zheng,
L. & Chou, C.L. 2010. Geochemistry of trace elements in coals from the
Zhuji Mine, Huainan Coalfield, Anhui, China. Int. J. Coal Geol. 81:
81-96.
Tang, J., Xiao, T.,
Wang, S., Lei, J., Zhang, M., Gong, Y., Li, H., Ning, Z. & He, L. 2009.
High cadmium concentrations in areas with endemic fluorosis: A serious hidden
toxin? Chemosphere 76: 300-305.
Tewalt, S.J., Bragg,
L.J. & Finkelman, R.B. 2001. Mercury in U.S. Coal - Abundance,
distribution, and modes of occurrence. USGS Fact Sheet FS-095-01. p. 4.
Thornton, I., Farago,
M.E., Keegan, T., Nieuwenhuijsen, M.J., Colvile, R.N., Pesch, B., Ranft, U.,
Miskovic, P., Jakubis, P. & EXPASCAN study group. 2003. Environmental
impacts, exposure assessment and health effects related to arsenic emissions
from a coal-fired power plant in Central Slovakia; the EXPASCAN Study. Arsenic
Exposure and Health Effects V. pp. 39-49.
US Public Law. 1990. Clean
Air Act Amendments of 1990. Public Law 101-549. p. 441.
US EPA (US Environmental
Protection Agency) 2000. The Clean Air Act.
Vassilev, S.V. & Braekman-Danheux,
C. 1999. Characterization of refuse-derived char from municipal solid waste 2.
Occurrence, abundance and source of trace elements. Fuel Process. Technol. 59:
135-161.
Vassilev, S.V. &
Vassileva, C.G. 1996. Occurrence, abundance and origin of minerals in coals and
coal ashes. Fuel Process. Technol. 48: 85-106.
Vejahati, F., Xu, Z.
& Gupta, R. 2010. Trace elements in coal: Associations with coal and
minerals and their behavior during coal utilization - A review. Fuel 89:
904-911.
Wang, W., Qin, Y., Wang,
J., Li, J. & Weiss, D.J. 2010. A preliminary method for determining
acceptable trace element levels in coal. Energy 35: 70-76.
Ward, C.R. 2002.
Analysis and significance of mineral matter in coal seams. Int. J. Coal
Geol. 50: 135-168.
Wolfenden, E.B. 1960. The
Geology and Mineral Resources of the Lower Rajang Valley and Adjoining Areas,
Sarawak. Memoir 11, Geological Survey of British Borneo. p. 167.
Zhang, J., Ren, D.,
Zheng, C., Zeng, R., Chou, C. & Liu, J. 2002. Trace element abundances in
major minerals of Late Permian coals from southwestern Guizhou province, China. Int. J. Coal Geol. 53: 55-64.
Zhao, Y., Zhang, J.,
Huang, W., Wang, Z., Li, Y., Song, D., Zhao, F. & Zheng, C. 2008. Arsenic
emission during combustion of high arsenic coals from Southwestern Guizhou,
China. Energ. Conv. Manage. 49: 615-624.
Zheng, B., Ding, Z.,
Huang, R., Zhu, J., Yu, X., Wang, A., Zhou, D., Mao, D. & Su, H. 1999.
Issues of health and disease relating to coal use in southwestern China. Int.
J. Coal Geol. 40: 119-132.
*Pengarang untuk surat-menyurat; email: siasg@siswa.um.edu.my
|