Sains Malaysiana 46(4)(2017): 645–653

http://dx.doi.org/10.17576/jsm-2017-4604-18

 

Effect of Substitution of Normal Weight Coarse Aggregate with Oil-Palm-Boiler Clinker

on Properties of Concrete

(Kesan Penggantian Agregat Kasar Berat Biasa dengan Klinker Dandang Kelapa-Sawit

ke atas Sifat Konkrit)

 

LEE JIN CHAI1,2, PAYAM SHAFIGH3,4*, HILMI MAHMUD1 & MUHAMMAD ASLAM1

 

1Department of Civil Engineering, Faculty of Engineering, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Civil Engineering, Faculty of Engineering, UCSI University

Cheras 56000, Kuala Lumpur, Federal Territory, Malaysia

 

3Department of Building Surveying, Faculty of Built Environment, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

4Center for Building, Construction & Tropical Architecture (BuCTA), Faculty of Built Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

 

Diserahkan: 5 Januari 2016/Diterima: 6 September 2016

 

ABSTRACT

Oil-palm-boiler clinker (OPBC) is an agricultural solid waste sourced from the palm oil industry in tropical regions. This study investigates the use of OPBC as coarse aggregate instead of conventional coarse aggregates to produce a greener concrete, which will help in implementing sustainable construction practices by reducing the usage of raw materials. For this purpose, normal weight coarse aggregates was substituted with dry OPBC aggregates up to 75% (by volume) in a high strength normal weight concrete. The effectiveness of this substitution on the properties of the concrete such as workability, density, compressive strength, splitting tensile strength and modulus of elasticity was studied. The slump test results showed that using OPBC in dry condition reduced the workability of the concrete and therefore can be used up to 50% of the total volume of coarse aggregate. Concrete containing 50% OPBC can be considered as semi-lightweight concrete with high strength. Using OPBC in concrete reduced the splitting tensile strength and modulus of elasticity, however, the reduction was not significant.

 

Keywords: Lightweight aggregate; lightweight aggregate concrete; mechanical properties; oil-palm-boiler clinker

 

ABSTRAK

Klinker dandang kelapa-sawit (OPBC) adalah sisa pepejal pertanian yang diperoleh daripada industri kelapa sawit di kawasan tropika. Penyelidikan ini mengkaji penggunaan OPBC sebagai agregat kasar dan bukan sebagai agregat kasar konvensional untuk penghasilan konkrit lebih hijau yang akan membantu dalam melaksanakan amalan pembinaan mampan dengan mengurangkan penggunaan bahan mentah. Bagi tujuan ini, berat normal agregat kasar digantikan dengan agregat OPBC kering sehingga 75% (isi padu) dalam konkrit kekuatan tinggi berat normal. Keberkesanan penggantian ini pada sifat konkrit kebolehkerjaan, ketumpatan, kekuatan mampatan, kekuatan pemecahbelahan tegangan dan modulus keanjalan turut dikaji. Keputusan ujian nendat menunjukkan bahawa penggunaan OPBC dalam keadaan kering mengurangkan kebolehkerjaan konkrit dan oleh yang demikian, OPBC boleh digunakan sehingga 50% daripada jumlah bilangan agregat kasar. Konkrit yang mengandungi 50% OPBC boleh dianggap sebagai konkrit yang separa ringan dengan kekuatan tinggi. Penggunaan OPBC dalam konkrit mengurangkan kekuatan pemecahbelahan tegangan dan modulus keanjalan, walau bagaimanapun, pengurangan adalah tidak ketara.

 

Kata kunci: Agregat ringan; agregat ringan konkrit; klinker dandang kelapa sawit; sifat mekanik

RUJUKAN

 

Adel, G.K., Payam, S., Mahmoud, M. & Hilmi, B.M. 2014. The role of 0-2 mm fine recycled concrete aggregate on the compressive strength and splitting tensile strength of recycled concrete aggregate concrete. Materials and Design 64: 345-354.

Ahmad, M.H. & Mohd, S. 2007. Mechanical Properties of Palm Oil Clinker Concrete. In Proceedings of 1st Engineering Conference on Energy and Environment, Sarawak, Malaysia.

BSI Document 92/17688. 1992. European Draft Standard Specification for lightweight aggregates, CEN/TC154/SC5, Sub Committee Lightweight Aggregates.

BS 8110: Part 2:1985. Structural use of concrete. Part 2: Code of practice for special circumstances. London: British Standards Institution.

CEB/FIP. 1977. Manual of Design and Technology, Lightweight Aggregate Concrete. 1st ed. Lancaster: The Construction Press Ltd.

CEBAR Info Sheet. 2006. Management of Agricultural Waste. University of Malaya. Vol. 1(2).

Chin, K.L. 2005. Major Challenges in Protecting Biodiversity. New Straits Times. January 25.

Committee Euro-International du Beton (CEB-PIP). 1993. CEB-PIP Model Code 1990. London: Thomas Telford.

Construction Industry Development Board (CIDB) 2000. Malaysian Construction Industry: Technology Foresight Report. CIDB Malaysia and APEC Technology Foresight Center, Bangkok.

Construction Industry Development Board (CIDB) 2007. Strategic Recommendations for Improving Environmental Practices in Construction Industry. Kuala Lumpur: CIDB Publisher.

Fujji, K., Adachi, S., Takeuchi, M.T., Kakizaki, M., Edahiro, H., lnoue, T. & Yamamoto, Y. 1998. Properties of high-strength and high-fluidity lightweight concrete. ACI Spec. Publ. 179: 65-84.

Graybeal, B. & Lwin, M.M. 2013. Lightweight concrete in highway infrastructure. ASPIRE. pp. 44-45.

Haque, M.N., Al-Khaiat, H. & Kayali, O. 2004. Strength and durability of lightweight concrete. Cem. Concr. Compos. 26: 307-314.

Holm, T.A. 1994. Lightweight Concrete and Aggregates. ASTM Stand. Tech. Publ. 169C. pp. 522-532.

Kanadasan, J. & Abdul Razak, H. 2015. Engineering and sustainability performance of self-compacting palm oil mill incinerated waste concrete. Journal of Cleaner Production 89: 78-86.

Kosmatka, S.H. & Wilson, M.L. 2011. Design and Control of Concrete Mixtures, EB001, fifteenth ed. Portland Cement Association, Skokie, Illinois, USA.

Lo, T.Y., Cui, H.Z. & Li, Z.G. 2004. Influence of aggregate pre-wetting and fly ash on mechanical properties of lightweight concrete. Waste Manage. 24: 333-338.

Mannan, M.A. & Ganapathy, C. 2004. Concrete from an agricultural waste-oil palm shell (OPS). Build Environ. 39(4): 441-448.

Mannan, M.A. & Ganapathy, C. 2002. Engineering properties of concrete with oil palm shell as coarse aggregate. Constr. Build Mater. 16(1): 29-34.

Mehta, P.K. & Monteiro, P.J.M. 2006. Concrete: Microstructure, Properties and Materials. 3rd. ed. New York: McGraw-Hill.

Mohammed, B., Al-Ganad, M.A. & Abdullahi, M. 2011. Analytical and experimental studies on composite slabs utilising palm oil clinker concrete. Construction and Building Materials 25: 3550-3560.

Neville, A.M. 2008. Properties of Concrete. 14th ed. Malaysia: CTP-WP.

Neville, A.M. & Brooks, J.J. 2008. Concrete Technology. New Delhi: Pearson Education Asia Pte Ltd, PP(CTP).

Nowak, A. & Rakoczy, A. 2011. Statistical model  for compressive strength of lightweight concrete. Architect Civ. Eng. Environ. 4(4): 73-80.

Omain, S.Z., Hamid, A.B.A., Rahim, A.R.A. & Salleh, N.M. 2010. Supply chain management practices in Malaysia palm oil industry. In The 11th Asia Pacific Industrial Engineering and Management Systems Conference, Melaka, Malaysia, 7-10 December.

Omar, W. & Mohamed, R.N. 2002. The performance of pretensioned prestressed concrete beams made with lightweight concrete. J. Civ. Eng. 14(1): 60-70.

Shafigh, P., Jumaat, M.Z. & Mahmud, H.B. 2012. Effect of replacement of normal weight coarse aggregate with oil palm shell on properties of concrete. Arab J. Sci. Eng. DOI 10.1007/s13369-012-0233-2.

Tasnimi, A.A. 2004. Mathematical model for complete stress-strain curve prediction of normal, light-weight and high-strength concretes. Mag. Con. Res. 56(1): 23-34.

Wahid, M.B. 2005. Malaysian Palm Oil Board (MPOB): Overview of the Malaysian Oil Palm Industry 2005. http:// econ.mpob.gov.my/ economy/su_review 2005.htm. Accessed on 14 February 2013.

Wong K.K. 2012. Concrete waste: Discard or recycle? Borneo Post. http://www.theborneopost.com/2012/10/31/ concrete-waste-discard-or-recycle/. Accessed on 14 February 2013.

Zain, M.F.M., Mahmud, H.B., Ilham, A. & Faizal, M. 2002. Prediction of splitting tensile strength of high-performance concrete. Cem. Concr. Res. 32(8): 1251-1258.

Zhang, M.H. & GjorvI, O.E. 1990. Development of high-strength lightweight concrete. ACI Spec Publ. 121: 667-682.

 

 

*Corresponding author; email: pshafigh@gmail.com

 

 

 

 

 

sebelumnya