Sains Malaysiana 46(4)(2017):
655–665
http://dx.doi.org/10.17576/jsm-2017-4604-19
Synthesis of Silica-supported
Nanoiron for Cr(VI) Removal: Application of Box-Behnken Statistical
Design (BBD)
(Sintesis Besi Nano
Disokong Silika untuk Penyingkiran Cr(VI): Aplikasi Reka Bentuk
Statistik Box-Behnken (BBD))
PRAEWPATRA
ARCHARIYAPANYAKUL1,
BHUCKCHANYA
PANGKUMHANG2,
PUMMARIN
KHAMDAHSAG3,4,5
& VISANU TANBOONCHUY2,5,6*
1Department of Chemical
Engineering, Faculty of Engineering, Thammasat University, Pathumthani
12120, Thailand
2Department of Environmental
Engineering, Faculty of Engineering, Khon Kaen University, Khon
Kaen 40002 Thailand
3Environmental Research
Institute, Center of Excellence on Hazardous Substance Management
Chulalongkorn
University, Bangkok 10330, Thailand
4Research Unit of Site
Remediation on Metals Management from Industry and Mining, Center
of Excellence on Hazardous Substance Management, Chulalongkorn University,
Bangkok 10330
Thailand
5Research Program of Toxic
Substance Management in Mining Industry, Center of Excellence on
Hazardous Substance Management, Chulalongkorn University, Bangkok
10330, Thailand
6Research Center for Environmental
and Hazardous Substance Management (EHSM)
Khon
Kaen University, Khon Kaen 40002, Thailand
Diserahkan:
25 April 2016/Diterima: 7 September 2016
ABSTRACT
This study aimed to
optimize the condition of silica-supported nanoscale zero valent
iron (NZVI/SiO2)
synthesis by colloidal impregnation method. Box-Behnken design (BBD)
was used as a tool to create and analyze the 17 synthesized conditions
of NZVI/SiO2 samples.
The independent variables included ethanol concentration (0-100
vol%), amount of silica (0.025-0.125 g) and agitation speed (100-400
rpm). In addition, analysis of variance (ANOVA) for a response surface quadratic
model was used to approximate statistical relationship of independent
variables. The reducing performance of the synthesized NZVI/SiO2 was
examined through removal of Cr(VI) contaminated in water. The optimum
of NZVI/SiO2 synthesis
was validated with 100 vol% of ethanol concentration, 0.075 g of
silica amount, and 100 rpm of agitation speed. The materials were
characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive
X-ray spectroscopy (SEM-EDX), and nitrogen adsorption/desorption
which showed the existence of NZVI phase,
composition, and morphology. The Cr(VI) removal efficiency of the
NZVI/SiO2 was
tested further at the solution pH 4, 7 and 10 in comparison with
that by pristine NZVI and silica-unsupported NZVI (NZVI
+ SiO2). Among the three materials,
NZVI/SiO2 presented
the highest Cr(VI) removal, especially at pH 7 and 10 with 98 and
94.41%, within 60 min. This was due to the adsorption of Cr(OH)3 and
Fe(OH)3 precipitates over SiO2 resulting
in availibilty of NZVI/SiO2’s
active sites. The proposed mechanism of Cr(VI) removal by NZVI/SiO2 was
also described.
Keywords: Box-Behnken
design; chromium; NZVI; silica-supported nanoiron
ABSTRAK
Kajian ini bertujuan
untuk mengoptimumkan keadaan sintesis besi skala nano disokong silika
bervalensi sifar (NZVI/SiO2)
melalui kaedah pemadatan koloid. Reka bentuk Box-Behnken (BBD)
telah digunakan sebagai alat untuk mencipta dan menganalisis sampel
17 keadaan sintesis NZVI/SiO2. Pemboleh ubah bebas termasuk
kepekatan etanol (0-100 vol%), silika (0.025-0.125 g) dan kelajuan
goncangan (100-400 rpm). Selain itu, analisis varians (ANOVA)
untuk model quadratik tindak balas permukaan telah digunakan untuk
menganggar hubungan statistik pemboleh ubah bebas. Pengurangan prestasi
sintesis NZVI/SiO2 telah
disemak melalui penyingkiran Cr(VI) tercemar dalam air. Sintesis
NZVI/SiO2 optimum
telah disahkan dengan 100 vol% kepekatan etanol, 0.075 g silika
dan 100 rpm kelajuan goncangan. Bahan ini telah dicirikan menggunakan
pembelauan sinar-x (XRD),
mikroskop elektron imbasan dengan spektroskopi tenaga serakan sinar-x
(SEM-EDX)
dan nitrogen penjerapan/penyahjerapan yang menunjukkan kewujudan
fasa NZVI,
komposisi dan morfologi. Kecekapan penyingkiran Cr(VI) NZVI/SiO2 telah
diuji selanjutnya pada larutan pH 4, 7 dan 10 berbanding dengan
NZVI asli
dan NZVI tidak disokong silika (NZVI/SiO2).
Antara ketiga-tiga bahan, NZVI/SiO2 menunjukkan
penyingkiran Cr(VI) tertinggi, terutamanya pada pH 7 dan 10 dengan
98 dan 94.41% dalam masa 60 minit. Ini disebabkan penjerapan Cr(OH)3 dan
mendakan Fe(OH)3 ke atas SiO2 yang
mengakibatkan ketersediaan tapak aktif NZVI/SiO2.
Mekanisme cadangan penyingkiran Cr(VI) oleh NZVI/SiO2 turut
dibincangkan.
Kata kunci: Besi nano disokong silika; kromium; NZVI;
reka bentuk Box-Behnken
RUJUKAN
Anderson,
R.A. 1997. Chromium as an essential nutrient for humans. Regulatory
Toxicology Pharmacology 26: 35-41.
Astrup,
T., Stipp, S.L.S. & Christensen, T.H. 2000. Immobilization of
chromate from coal fly ash leachate using an attenuating barrier
containing zero-valent iron. Environmental Science & Technology
34: 4163-4168.
Blowes,
D.W., Ptacek, C.J. & Jambor, J.L. 1997. In situ remediation
of Cr(VI) contaminated ground water using permeable reactive walls:
Laboratory studies. Environmental Science & Technology 31:
3348-3357.
Chang,
L.Y. 2005. Chromate reduction in wastewater at different pH levels
using thin iron wires-a laboratory study. Environmental Progress
24: 305-316.
Chang,
L.Y. 2003. Alternative chromium reduction and heavymetal precipitation
methods for industrial wastewater. Environmental Progress 22:
174-182.
Chen,
S.S., Cheng, C.Y., Li, C.W., Chai, P.H. & Chang, Y.M. 2006.
Reduction of chromate from electroplating wastewater from
pH 1 to 2 using fluidized zero valent iron process. Journal of
Hazardous Materials 142: 362-367.
Coller-Myburgh, C.V., Rensburg, L.V. & Maboeta, M. 2014. Utilizing
earthworm and microbial assays to assess the ecotoxicity of chromium
mine wastes. Applied Soil Ecology 83: 258-265.
Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking
water. Toxicology and Applied Pharmacology 188: 1-5.
Dassi, D., Frikha, F., Zouari, M.H., Belbahri, L., Woodward, S. &
Mechichi, T. 2012. Application of response surface methodology to
optimize decolourization of dyes by the laccase-mediator system.
Journal of Environmental Management 108: 84-91.
Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X. & Bi, D. 2015. The
removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported
nanoscale zero-valent iron (S-NZVI). Chemosphere 138: 726-734.
Guha, S. & Bhargava, P. 2005. Removal of chromium from synthetic
plating waste by zero-valent iron and sulfate-reducing bacteria.
Water Environment Research 77: 411-416.
Katz, S.A. & Salem, H. 1993. The toxicology of chromium with
respect to its chemical speciation: A review. Journal of Applied
Toxicology 13: 217-224.
Kiattisaksiri, P., Khamdahsag, P., Khemthong, P., Pimpha, N. &
Grisdanurak, N. 2014. Photocatalytic degradation of 2,4-dichlorophenol
over Fe-ZnO catalyst under visible light. Korean Journal of Chemical
Engineering. DOI: 10.1007/ s11814-014-0379-6.
Kohn, T., Livi, K.J.T., Roberts, A.L. & Vikesland, P.J. 2005.
Longevity of granular iron in groundwater treatment processes: Corrosion
product development. Environmental Science & Technology 39:
2867-2879.
Li, X., Ai, L. & Jiang, J. 2016. Nanoscale zerovalent iron decorated
on graphene nanosheets for Cr(VI) removal from aqueous solution:
Surface corrosion retard induced the enhanced performance. Chemical
Engineering Journal 288: 789-797.
Li, X.Q., Cao, J. & Zhang, W.X. 2008. Immobilization of hexavalent
chromium with Iron nanoparticles: Characterizations with high resolution
X-ray photoelectron spectroscopy (HR-XPS). Industrial & Engineering
Chemistry Research 47: 2131-2139.
Liu, C., Fiol, N., Poch, J. & Villaescusa, L. 2016. A new technology
for the treatment of chromium electroplating wastewater based on
biosorption. Journal of Water Process Engineering 11: 143-151.
Mocellin, J., Mercier, G., Morel, J.L., Blais, J.F. & Simonnot,
M.O. 2015. Factors influencing the Zn and Mn extraction from pyrometallurgical
sludge in the steel manufacturing industry. Journal of Environmental
Management 158: 48-54.
Oh, Y.J., Song, H., Shin, W.S., Choi, S.J. & Kim, Y.H. 2007.
Effect of amorphous silica and silica sand on removal of chromium(VI)
by zero-valent iron. Chemosphere 66: 858- 865.
Padmavathy, K.S., Madhu, G. & Haseena, P.V. 2016. A study on
effects of pH, adsorption dosage, time, initial concentration and
adsorption isotherm study for removal of hexavalent chromium (Cr(VI))
from wastewater by magnetite nanoparticles. Procedia Technology
24: 585-594.
Powell, R.M. & Puls, R.W. 1997. Proton generation by dissolution
of intrinsic or augmented aluminosilicate minerals for in situ contaminant
remediation by zero-valence-state iron. Environmental Science
& Technology 31: 2244-2251.
Powell, R.M., Puls, R.W., Hightower, S.K. & Sabatini, D.A. 1995.
Coupled iron corrosion and chromate reduction: Mechanisms for subsurface
remediation. Environmental Science & Technology 29: 1913-1922.
Sass, B.M. & Rai, D. 1987. Solubility of amorphous chromium(III)-iron(III)
hydroxide solid-solution. Inorganic Chemistry 26: 2228-2232.
Shih, Y.J., Chen, C.W., Hsia, K.F. & Dong, C.D. 2015. Granulation
for extended-release of nanoscale zero-valent iron exemplified by
hexavalent chromium reduction in aqueous solution. Separation
and Purification Technology 156: 1073-1081.
Tanboonchuy, V., Grisdanurak, N. & Liao, C.H. 2012. Nitrate probe
for quantifying reducing power of nanoscale zero-valent iron. Sustainable
Environment Research 22: 185-191.
Tanboonchuy, V., Hsu, J.C., Grisdanurak, N. & Liao, C.H. 2011.
Gas-bubbled nano zero-valent iron process for high concentration
arsenate removal. Journal of Hazardous Materials 186: 2123-2128.
Tantriratan, P., Wirojanagud, W., Neramittagapong, S., Wantala, K.
& Grisdanurak, N. 2011. Optimization for UV-photocatalytic degradation
of paraquat over titanium dioxide supported on rice husk silica
using Box-Behnken design. Indian Journal of Chemical Technology
18: 363-371.
Toli, A., Chalastara, K., Mystrioti, C., Xenidis, A. & Papassiopi,
N. 2016. Incorporation of zero valent iron nanoparticles in the
matrix of cationic resin beads for the remediation of Cr(VI) contaminated
waters. Environmental Pollution 214: 419-429.
Tripathi, P., Srivastava, V.C. & Kumar, A. 2009. Optimization
of an azo dye batch adsorption parameters using Box-Behnken design.
Desalination 249: 1273-1279.
Vikesland, P.J., Klausen, J., Zimmermann, H., Roberts, A.L. &
Ball, W.P. 2003. Longevity of granular iron in groundwater treatment
processes: Changes in solute transport properties over time. Journal
of Contaminant Hydrology 64: 3-33.
Wang, Q., Snyder, S., Kim, J. & Choi, H. 2009. Aqueous ethanol
modified nanoscale zerovalent iron in bromate reduction: Synthesis,
characterization and reactivity. Environmental Science &
Technology 43: 3292-3299.
World Health Organization (WHO). 2004. Guidelines for Drinking-water Quality. 3rd ed. Recommendations. WHO,
Geneva. 1: 334-335.
Wu, C., Li, C., Leng, D. & Cui, D. 2016. Factors affecting the
reductive properties of the core-shell Sio2-coated iron nanoparticles.
Advances in Chemical Engineering and Science 6: 316-323.
Wu, L., Liao, L., Lv, G. & Qin, F. 2015. Stability and pH-independence
of nano-zero-valent iron intercalated montmorillonite and its application
on Ce(VI) removal. Journal of Contaminant Hydrology 179:
1-9.
Yirsaw, B.D., Megharaj, M., Chen, Z. & Naidu, R. 2016. Reduction
of hexavalent chromium by green synthesized nano zero valent iron
and process optimization using response surface methodology. Environmental
Technology & Innovation 5: 136-147.
Zhang, Y., Li, Y., Li, J., Hu, L. & Zheng, X. 2011. Enhanced
removal of nitrate by a novel composite: Nanoscale zero valent iron
supported on pillared clay. Chemical Engineering Journal 171:
526-531.
Zhou,
X., Lv, B., Zhou, Z., Li, W. & Jing, G. 2015. Evaluation of
highly active nanoscale zero-valent iron coupled with ultrasound
for chromium(Vi) removal. Chemical Engineering Journal 281:
155-163.
*Pengarang
untuk surat-menyurat; email: visanu@kku.ac.th
|