Sains
Malaysiana 46(4)(2017): 667675
http://dx.doi.org/10.17576/jsm-2017-4604-20
High Strength
Lightweight Aggregate Concrete using Blended Coarse Lightweight
Aggregate Origin from Palm Oil Industry
(Konkrit
Agregat Ringan Kekuatan Tinggi menggunakan Gabungan Kasar Ringan
Agregat Asal daripada Industri Minyak Sawit)
MUHAMMAD
ASLAM1*,
PAYAM
SHAFIGH2,3
& MOHD ZAMIN JUMAAT1
1Department of Civil Engineering,
Faculty of Engineering, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
2Department of Building Surveying,
Faculty of Built Environment, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
3Center for Building,
Construction & Tropical Architecture (BuCTA), Faculty of Built
Environment, University of Malaya, 50603 Kuala Lumpur, Malaysia
Diserahkan:
4 September 2015/Diterima: 14 Oktober 2016
ABSTRACT
The
benefits of using structural lightweight concrete in construction
industry, particularly in high rise buildings, over normal weight
concrete are numerous. The main method of producing structural
lightweight concrete is the use of lightweight aggregates instead
of ordinary aggregates in concrete. Due to the limited resources
for natural and artificial lightweight aggregates, the alternative
sources for lightweight aggregates should be discovered from industrial
wastes. Oil palm shell (OPS) and oil-palm-boiler clinker (OPBC)
are two solid wastes from palm oil industry and are available
in abundance in tropical regimes. The use of just OPS as coarse lightweight aggregate
in concrete mixture has some drawbacks for concrete. The aim of
this study was to investigate engineering properties of a lightweight
concrete containing both of these aggregates. For this purpose,
in this study, 50% (by volume) of OPS was replaced with OPBC in
an OPS lightweight concrete. The test results showed that when
OPS was substituted with OPBC,
significant improvement was observed in the compressive, splitting
tensile and flexural strengths. In addition, initial and final
water absorption as well as drying shrinkage strain of blended
coarse lightweight aggregate concrete were significantly less
than OPS concrete.
Keywords:
Clinker; drying shrinkage; lightweight aggregate; mechanical properties;
oil palm shell
ABSTRAK
Terdapat
banyak faedah menggunakan struktur konkrit ringan dalam industri
pembinaan, terutamanya pada bangunan tinggi, berbanding konkrit
biasa. Kaedah utama menghasilkan struktur konkrit ringan adalah
penggunaan agregat ringan dan bukannya biasa agregat dalam konkrit.
Oleh kerana sumber yang terhad untuk agregat ringan yang asli
dan tiruan, sumber alternatif untuk agregat ringan harus diterokai
daripada sisa industri. Tempurung kelapa sawit (OPS)
dan klinker dandang kelapa-sawit (OPBC) adalah dua sisa pepejal
daripada industri minyak sawit dan didapati dengan banyaknya dalam
rejim tropika. Penggunaan OPS sahaja sebagai agregat ringan kasar
dalam campuran konkrit mempunyai beberapa kelemahan untuk konkrit.
Tujuan kajian ini adalah untuk mengkaji sifat kejuruteraan konkrit
ringan yang mengandungi kedua-dua agregat ini. Bagi tujuan kajian
ini, 50% (isi padu) daripada OPS telah digantikan dengan OPBC untuk
konkrit ringan OPS. Keputusan ujian menunjukkan apabila
OPS digantikan dengan OPBC,
peningkatan ketara diperhatikan di dalam mampatan, pemecahbelahan
tegangan dan kekuatan lenturan. Di samping itu, serapan awal dan
akhir air serta strain pengecutan kering konkrit campuran kasar
agregat ringan adalah jauh berkurangan daripada konkrit OPS.
Kata kunci: Agregat ringan; klinker; pengecutan kering; sifat mekanik;
tempurung kelapa sawit
RUJUKAN
Abdullah,
A.A.A. 1996. Chapter 10. Palm oil shell aggregate for lightweight
concrete. Waste Material Used in Concrete Manufacturing. Elsevier:
William Andrew Inc. pp. 624-636.
ACI
209.2R-08. 2008. Guide for Modeling and Calculating Shrinkage
and Creep in Hardened Concrete. USA: ACI-Committee 209.
Al-Attar,
T.S. 2008. Effect of coarse aggregate characteristics on drying
shrinkage of concrete. Journal of Engineering and Technology
26(2): 1-8.
Al-Khaiat,
H. & Haque, M.N. 1998. Effect of initial curing on early strength
and physical properties of a lightweight concrete. Cement and
Concrete Research 28(6): 859-866.
Alengaram,
U.J., Jumaat, M.Z. & Mahmud, H. 2008. Influence of sand content
and silica fume on mechanical properties of palm kernel shell
concrete. Paper presented at the Int. Conf. Construction Building
Technology. ICCBT: pp. 251-262.
Aslam,
M., Shafigh, P. & Jumaat, M.Z. 2016a. Oil-palm by-products
as lightweight aggregate in concrete mixture: A review. Journal
of Cleaner Production 126: 56-73.
Aslam,
M., Shafigh, P., Jumaat, M.Z. & Lachemi, M. 2016b. Benefits
of using blended waste coarse lightweight aggregates in structural
lightweight aggregate concrete. Journal of Cleaner Production
119: 108-117.
Aslam,
M., Shafigh, P. & Jumaat, M.Z. 2016c. Drying shrinkage behaviour
of structural lightweight aggregate concrete containing blended
oil palm bio-products. Journal of Cleaner Production 127:
183-194.
Aslam,
M., Shafigh, P. & Jumaat, M.Z. 2015. Structural lightweight
aggregate concrete by incorporating solid wastes as coarse lightweight
aggregate. Applied Mechanics and Materials 749: 337-342.
ASTM
C 330. 2005. Standard Specification for Lightweight Aggregates
for Structural Concrete. Annual book of ASTM standards.
Bogas,
J.A., Nogueira, R. & Almeida, N.G. 2014. Influence of mineral
additions and different compositional parameters on the shrinkage
of structural expanded clay lightweight concrete. Materials
& Design 56: 1039-1048.
Carlson,
R.W. 1938. Drying shrinkage of concrete as affected by many factors.
Paper presented at the Proceedings ASTM 38(2): 419-437.
CEB/FIP
manual of design and technology. 1977. Lightweight Aggregate
Concrete. First pub. Lancaster: The Construction Press Ltd.
Chuan,
L.F. 2015. Innovative cement additives quality improvers in sustainable
cement and concrete. Sains Malaysiana 44(11): 1599-1607.
Hilmi,
M., Shafigh, P. & Jumaat, M.Z. 2014. Structural lightweight
aggregate concrete containing high volume waste materials. Key
Engineering Materials 594-595: 498-502.
Holm,
T.A. & Bremner, T.W. 2000. State of the Art report on high
strength, high durability structural low-density concrete for
applications in severe marine environments (Vol. ERDC/ SL
TR-00-3): US Army Corps of Engineers, Engineering Research and
Development Center.
Kosmatka,
S.H., Panarese, W.C. & Panarese, W.C. 2002. Design and
Control of Concrete Mixtures. 14th ed. USA: Portland Cement
Association.
Lo,
T.Y., Cui, H.Z. & Li, Z.G. 2004. Influence of aggregate pre-wetting
and fly ash on mechanical properties of lightweight concrete.
Waste Management 24(4): 333-338.
Malesev,
M., Radonjanin, V., Lukic, I. & Bulatovic, V. 2014. The effect
of aggregate, type and quantity of cement on modulus of elasticity
of lightweight aggregate concrete. Arabian Journal for Science
and Engineering 39(2): 705-711.
Mannan,
M.A. & Neglo, K. 2010. Mix design for oil-palm-boiler clinker
(OPBC) concrete. Journal of Science and Technology (Ghana)
30(1): 111-118.
Mannan,
M.A. & Ganapathy, C. 2002. Engineering properties of concrete
with oil palm shell as coarse aggregate. Construction and Building
Materials 16(1): 29-34.
Mannan,
M.A., Alexander, J., Ganapathy, C. & Teo, D.C.L. 2006. Quality
improvement of oil palm shell (OPS) as coarse aggregate in lightweight
concrete. Building and Environment 41(9): 1239-1242.
Mehta,
P.K. & Monteiro, P.J.M. 2006. Concrete: Microstructure,
Properties, and Materials. Vol. 3. New York: McGraw-Hill.
Neville,
A.M. & Brooks, J.J. 2008. Concrete Technology. New
Delhi: Pearson Education Asia Pte Ltd, PP(CTP).
Neville,
A.M. 2008. Properties of Concrete. 14th ed. Malaysia: CTP-VVP,
Neville,
A.M. 1971. Hardened Concrete: Physical and Mechanical Aspects.
American Concrete Institute: Iowa State University Press.
Okpala,
D.C. 1990. Palm kernel shell as a lightweight aggregate in concrete.
Building and Environment 25: 291-296.
Pelisser,
F., Barcelos, A., Santos, D., Peterson, M. & Bernardin, A.M.
2012. Lightweight concrete production with low Portland cement
consumption. Journal of Cleaner Production 23: 68-74.
Polat,
R., Demirboğa, R., Karakoç, M.B. & Türkmen, İ. 2010.
The influence of lightweight aggregate on the physico-mechanical
properties of concrete exposed to freeze-thaw cycles. Cold
Regions Science and Technology 60(1): 51-56.
Ranjbar,
M.M., Madandoust, R., Mousavi, S.Y. & Yosefi, S. 2013. Effects
of natural zeolite on the fresh and hardened properties of self-compacted
concrete. Construction and Building Materials (47): 806-813.
Sari,
D. & Pasamehmetoglu, A.G. 2005. The effects of gradation and
admixture on the pumice lightweight aggregate concrete. Cement
and Concrete Research 35(5): 936-942.
Sari,
K.A.M., Mat, S., Badri, K.H. & Zain, M.F.M. 2015. A study
on the characteristics of palm-based polyurethane as a lightweight
aggregate in concrete mix. Sains Malaysiana 44(6): 771-778.
Shafigh,
P., Ghafari, H., Mahmud, H.B. & Jumaat, M.Z. 2014a. A comparison
study of the mechanical properties and drying shrinkage of oil
palm shell and expanded clay lightweight aggregate concretes.
Materials & Design 60: 320-327.
Shafigh,
P., Mahmud, H.B., Jumaat, M.Z., Ahmmad, R. & Bahri, S. 2014b.
Structural lightweight aggregate concrete using two types of waste
from the palm oil industry as aggregate. Journal of Cleaner
Production 80: 187-196.
Shafigh,
P., Mahmud, H.B., Jumaat, M.Z. & Zargar, M. 2014c. Agricultural
wastes as aggregate in concrete mixtures-A review. Construction
and Building Materials 53: 110-117.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2012a. Effect of replacement
of normal weight coarse aggregate with oil palm shell on properties
of concrete. Arabian Journal for Science and Engineering 37(4):
955-964.
Shafigh,
P., Jumaat, M.Z., Mahmud, H.B. & Hamid, N.A.A. 2012b. Lightweight
concrete made from crushed oil palm shell: Tensile strength and
effect of initial curing on compressive strength. Construction and Building Materials
27(1): 252-258.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2011. Oil palm shell as a lightweight
aggregate for production high strength lightweight concrete. Construction
and Building Materials 25(4): 1848-1853.
Shafigh,
P., Jumaat, M.Z. & Mahmud, H. 2010. Mix design and mechanical
properties of oil palm shell lightweight aggregate concrete: A
review. International Journal of the Physical Sciences 5(14):
2127-2134.
Sobuz,
H.R., Hasan, N.M.S., Tamanna, N. & Islam, M.S. 2014. Structural
lightweight concrete production by using oil palm shell. Journal
of Materials 2014: Article ID. 870247.
Tam,
V.W.Y. 2009. Comparing the implementation of concrete recycling
in the Australian and Japanese construction industries. Journal
of Cleaner Production 17: 688-702.
Teo,
D.C.L., Mannan, M.A., Kurian, V.J. & Ganapathy, C. 2007. Lightweight
concrete made from oil palm shell (OPS): Structural bond and durability
properties. Building and Environment 42(7): 2614-2621.
Yasar,
E., Atis, C.D. & Kiliç, A. 2004. High strength lightweight
concrete made with ternary mixtures of cement-fly ash-silica fume
and scoria as aggregate. Turk. J. Eng. Environ. Sci. 28:
95-100.
*Pengarang untuk
surat-menyurat; email: bhanbhroma@gmail.com