Sains Malaysiana 46(5)(2017): 755–762
http://dx.doi.org/10.17576/jsm-2017-4605-10
Laser Cutting of Square Blanks in Stainless
Steel-304 Sheets: HAZ and Thermal Stress Analysis
(Pemotongan Laser
Segi Empat Kosong dalam Lembaran
Keluli Kalis
Karat-304: HAZ dan Analisis Tegasan Termal)
A.M. SIFULLAH1,
KHALED
I.
AHMED2,
Y.
NUKMAN1*,
M.A.
HASSAN1
& A. HOSSAIN1
1Department of Mechanical
Engineering, Faculty of Engineering, University of Malaya
50603 Kuala Lumpur,
Federal Territory, Malaysia
2Mechanical Engineering
Department, Assiut University, Assiut 71615, Egypt
Diserahkan: 9 Mac 2016/Diterima: 17 Oktober 2016
ABSTRACT
Laser cutting is a non-traditional
cutting process and cutting of square blank in stainless steel-304
sheets cause heat affected zone (HAZ)
and thermal stress. Formation of HAZ is undesirable and excessive
stress cause surface defects. Thus, it is necessary to analyze them
intensively. The process of laser cutting is a complex thermo-mechanical
process. Hence, in this study a thermo-mechanical finite element
model has been introduced by ANSYS to predict the temporal variation together with thermal
stress and width of heat affected zone (HAZ).
CO2 laser is used to cut 10 × 10
mm square blank in a 3 mm thick stainless steel-304 sheet. Optical
microscope and SEM
are used to analyse the
parametric effect on surface quality at the cutting edge. The results
showed that maximum temperature at the cutting edge is about to
melting temperature and independent to laser power and cutting speed.
Importantly, cutting speed has significant effect on rate of temperature
variation. Moreover, the width of HAZ increases
with the increase of laser power and decrease of cutting speed.
However results of ANOVA suggested that laser power is the most significant
parameter having 64.21% of contribution to width of HAZ.
Furthermore, maximum stress is observed at the corner; which is
supported by SEM
analysis.
Keywords: Finite element analysis;
heat affected zone; laser blanking; stainless steel-304; thermal
stress
ABSTRAK
Pemotongan laser
adalah satu
proses pemotongan bukan tradisi dan memotong
kepingan keluli
kalis karat-304 segi empat kosong boleh
menyebabkan terjadinya
zon terjejas haba (HAZ)
dan tekanan
termal. Pembentukan HAZ
tidak diingini dan tekanan berlebihan
akan menyebabkan
kecacatan permukaan.
Oleh itu, adalah perlu
untuk menganalisis
perkara ini secara
intensif. Tetapi
proses pemotongan laser adalah
proses termo-mekanik kompleks.
Oleh
itu, dalam kajian
ini, model unsur
terhingga termo-mekanik telah diperkenalkan menggunakan
ANSYS untuk
meramalkan perubahan variasi sementara bersama dengan tekanan termal dan lebar zon terjejas haba
(HAZ). CO2 laser
digunakan untuk
memotong 10 × 10 mm kepingan keluli kalis karat-304 segi empat kosong
dengan kelebaran
3 mm. Mikroskop optik dan SEM digunakan
untuk menganalisis
kesan parametrik pada kualiti permukaan
di pinggir pemotongan.
Keputusan
menunjukkan bahawa suhu maksimum di pinggir pemotongan adalah berkadaran dengan suhu takat
lebur dan berkadaran dengan kuasa laser dan kelajuan pemotongan. Oleh itu, kelajuan
pemotongan mempunyai
kesan yang besar ke atas kadar perubahan suhu. Tambahan pula, lebar HAZ meningkat dengan peningkatan kuasa laser dan penurunan kelajuan
pemotongan. Walau bagaimanapun,
keputusan ANOVA mencadangkan
bahawa kuasa
laser adalah parameter yang paling penting
mempunyai 64.21% daripada
sumbangan untuk lebar HAZ. Tambahan pula, tekanan
maksimum diperhatikan
berlaku di bahagian sudut juga disokong
oleh analisis SEM.
Kata kunci: Analisis
model terhingga; kalis
karat-304; pemblankan laser; tegasan termal; zon
terjejas haba
RUJUKAN
Anderson, M.C. & Shin, Y.C. 2006. Laser-assisted
machining of an austenitic stainless steel: P550. Proceedings
of the Institution of Mechanical Engineers, Part B: Journal of Engineering
Manufacture 220(12): 2055-2067.
Boyden, S. & Zhang, Y. 2006. Temperature
and wavelength-dependent spectral absorptivities
of metallic materials in the infrared. Journal of Thermophysics
and Heat Transfer 20(1): 9-15.
Dinov,
I. 2014. Statistics Online Computational Resource
(SOCR). Available from http://www.socr.ucla.edu/applets.
dir/f_table.html.
Guenael,
G., Morel, F., Lebrun, J-L. & Morel, A. 2007. Machinability and
surface integrity for a bearing steel and a titanium alloy in laser
assisted machining (optimisation on LAM
on two materials). Lasers in Engineering 17(5): 329-344.
Inc.
2007.
ANSYS. ANSYS Theory Manual, Release 11.
Jamshidi
Aval, H., Farzadi, A., Serajzadeh,
S. & Kokabi, A.H. 2009. Theoretical and
experimental study of microstructures and weld pool geometry during
GTAW of 304 stainless steel. The International Journal of Advanced
Manufacturing Technology 42(11-12): 1043-1051. doi: 10.1007/s00170- 008-1663-6.
Khan,
O.U. & Yilbas, B.S. 2004. Laser heating of sheet metal and thermal stress development.
Journal of Materials Processing Technology 155: 2045-2050.
Lee,
H.T. & Chen, C.T. 2011. Numerical and experimental
investigation into effect of temperature field on sensitization
of AISI 304 in butt welds fabricated by gas tungsten arc welding.
Materials Transactions 52(7): 1506-1514.
Masumoto,
I., Shinoda, T. & Hirate,
T. 1990.
Weld decay recovery by laser beam surfacing of austenitic stainless
steel welded joints. Transactions of the Japan Welding Society
21(1): 11-17.
Mazumder,
J. & Steen, W.M. 1980. Heat transfer model
for CW laser material processing. Journal of Applied Physics
51(2): 941-947.
Nyon,
K.Y., Nyeoh, C.Y., Mohzani
Mokhtar & Razi Abdul- Rahman. 2012. Finite element
analysis of laser inert gas cutting on Inconel 718. The International
Journal of Advanced Manufacturing Technology 60(9-12): 995-1007.
Parandoush
Pedram & Altab
Hossain. 2014. A review
of modeling and simulation of laser beam machining. International
Journal of Machine Tools and Manufacture 85: 135-145.
Sheng,
P.S. & Joshi, V.S. 1995. Analysis of heat-affected
zone formation for laser cutting of stainless-steel. Journal
of Materials Processing Technology 53(3-4): 879-892. doi: 10.1016/0924-0136(94)01761-O.
Shiue,
R.K., Chang, C.T., Young, M.C. & Tsay,
L.W. 2004. The effect of
residual thermal stresses on the fatigue crack growth of laser-surface-annealed
AISI 304 stainless steel: Part I: computer simulation. Materials
Science and Engineering: A 364(1): 101-108.
Steen,
W.M., Mazumder, J. & Watkins, K.G.
2003. Laser Material Processing. New York: Springer.
Tan,
C.W., Chan, Y.C., Leung, B.N.W., Tsun,
J., & So, A.C.K. 2005.
Characterization of Kovar-to-Kovar
laser welded joints and its mechanical strength. Optics and Lasers
in Engineering 43(2): 151-162.
Yang,
J., Sun, S., Brandt, M. & Yan, W. 2010. Experimental investigation
and 3D finite element prediction of the heat affected zone during
laser assisted machining of Ti6Al4V alloy. Journal of Materials
Processing Technology 210(15): 2215-2222. doi:
http://dx.doi.org/10.1016/j. jmatprotec.2010.08.007.
Yilbas,
B.S. & Akhtar, S.S. 2011. Laser cutting of alloy steel: Three-dimensional
modeling of temperature and stress fields. Materials and Manufacturing
Processes 26(1): 104-112. doi: 10.1080/10426914.2010.501092.
Yilbas,
B.S., Akhtar, S. & Keles, O. 2014. Laser cutting
of triangular blanks from thick aluminum foam plate: Thermal stress
analysis and morphology. Applied
Thermal Engineering 62(1): 28-36. doi:
http://dx.doi.org/10.1016/j. applthermaleng.2013.09.026.
Yilbas, B.S., Arif, A.F.M.
& Abdul Aleem, B.J. 2010. Laser cutting
of rectangular blanks in thick sheet steel: Effect of cutting speed
on thermal stresses. Journal of Materials Engineering and Performance
19(2): 177-184.
Yilbas, B.S., Arif, A.F.M.
& Abdul Aleem, B.J. 2009. Laser cutting
of holes in thick sheet metals: Development of stress field. Optics
and Lasers in Engineering 47(9): 909-916. doi:
http://dx.doi.org/10.1016/j.optlaseng.2009.03.002.
Yilbas,
B.S., Davies, R. & Yilbas, Z. 1990. Study into the
measurement and prediction of penetration time during CO2 laser cutting
process. Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture 204(2): 105-113.
Yusoff
Nukman, Saifu
R. Ismail, Azuddin Mamat & Aznijar Ahmad-Yazid. 2008. Selected Malaysian wood CO2-laser cutting parameters
and cut quality. American Journal of Applied Sciences 5(8):
990-996.
*Pengarang untuk surat-menyurat; email: nukman@um.edu.my
|