Sains Malaysiana 46(5)(2017): 763–771
http://dx.doi.org/10.17576/jsm-2017-4605-11
Soil Organic Matter Mineralization under Different Temperatures
and Moisture Conditions in Kőzőldağ Plateau, Turkey
(Pemineralan Jirim Tanah Organik di Bawah Suhu dan Lembapan Berbeza
di Dataran Penara Kőzőldağ, Turki)
SAHIN CENKSEVEN,
NACIDE
KIZILDAG*,
BURAK
KOCAK,
HUSNIYE
AKA
SAGLIKER
&
CENGIZ
DARICI
1Department
of Soil Science and Plant Nutrition, Cukurova University, Turkey
2Central
Research Laboratory, Cukurova University, Turkey
3Department
of Biology, Cukurova University, Turkey
4Department of Biology,
University of Osmaniye Korkut Ata, Turkey
Diserahkan: 7 Julai 2016/Diterima: 10 Oktober 2016
ABSTRACT
Drought by climate change in East Mediterranean Region will change
soil temperature and moisture that lead to alter the cycling of
biological elements like carbon and nitrogen. However, there are
few studies that show how sensitivity of soil organic matter mineralization
to temperature and/or moisture can be modified by changes in these
parameters. In order to study how these changes in temperature and
moisture affect soil carbon and nitrogen mineralization, a laboratory
experiment was carried out in two depths (0-5 and 5-15 cm) of soils
of Onobrychis beata and Trifolium
speciosum being common annual plants in Turkey that was taken
from Kőzőldag Plataeu (Adana city). Some soil physical and chemical
properties and as well as rate of carbon and nitrogen mineralizations
were determined for both depths of soils. These soils were incubated
for 42 days under different field capacities (FC 60, 80 and 100%)
and temperatures (24, 28 and 32ˇC). Cumulative carbon mineralization
(Cm), potential mineralizable carbon (C0)
and rate of carbon mineralization of all soils were increased with
rising temperatures. Rate of carbon mineralization in O. beata
soil were lower than T. speciosum soil. NH4-N and NO3-N
contents at 42nd day were higher than initial levels of soils and
also increased with temperatures and field capacities. In summary,
sensitivity of soil organic matter mineralization to temperature
was higher at 32ˇC in upper layer and lower at 24ˇC in deeper layer
of both soils.
Keywords: Climate change; East Mediterranean Region; incubation experiment;
soil C and N mineralization
ABSTRAK
Kemarau yang disebabkan oleh perubahan iklim di Rantau Mediterranean
Timur akan mengubah suhu tanah dan lembapan
yang membawa kepada perubahan kitaran unsur biologi seperti karbon
dan nitrogen. Walau bagaimanapun, terdapat beberapa
kajian yang menunjukkan bagaimana sensitiviti pemineralan jirim
tanah organik ke atas suhu dan/atau lembapan boleh diubah suai melalui
perubahan kepada parameter ini. Dalam usaha untuk mengkaji
bagaimana perubahan dalam suhu dan lembapan mempengaruhi karbon
tanah dan pemineralan nitrogen, uji kaji makmal telah dijalankan
pada dua kedalaman (0-5 dan 5-15 cm) daripada tanih Onobrychis beata dan Trifolium speciosum
yang merupakan tumbuhan biasa di Turki yang telah diambil dari
Penara Kőzőldag (bandar Adana). Beberapa sifat fizikal dan kimia
tanah serta kadar pemineralan karbon dan
nitrogen telah ditentukan bagi kedua-dua kedalaman tanah. Tanah
ini telah dieram selama 42 hari di bawah kapasiti bidang yang berlainan
(FC 60, 80 dan 100%) dan suhu (24, 28 dan 32ˇC). Pemineralan
karbon kumulatif (Cm), potensi karbon boleh dimineral
(C0) dan peningkatan kadar pemineralan
karbon untuk semua tanah dengan peningkatan suhu. Kadar pemineralan karbon dalam tanah O.
beata adalah lebih rendah daripada tanah T.
speciosum. Kandungan NH4-N
dan NO3-N pada hari ke-42 adalah lebih tinggi daripada tanah
peringkat awal dan meningkat dengan suhu dan kapasiti lapangan.
Kesimpulannya, sensitiviti pemineralan jirim tanah organik kepada
suhu adalah lebih tinggi pada 32ˇC dalam lapisan atas dan 24ˇC pada
lapisan bawah untuk kedua-dua tanah.
Kata kunci: Pemineralan tanah
C dan N; perubahan iklim; Rantau Mediterranean Timur; uji kaji incubator
RUJUKAN
Ajwa, H.A. & Tabatabai, M.A. 1994. Decomposition
of different organic materials in soils. Biology and Fertility
of Soils 18: 175-182.
Birch, H.F. 1958. The effect of soil drying on humus decomposition
and nitrogen availability. Plant and Soil 10: 9-31.
Benlot, C. 1977. Recherches sur les activites
biochimiques dans les successions de sols derives de cendres
volcaniques sous climat tropical humide (Zaire- Indonesie). ENS
Lab. de Zoologie, Paris.
Bloem, J., de Ruiter, P.C., Koopman, G.J., Lebbink, G. &
Brussaard, L. 1992. Microbial numbers and activity in dried and
rewetted arable soil under integrated and conventional management.
Soil Biology and Biochemistry 24: 655-665.
Bouyoucos, G.S. 1951. A recalibration of
the hydrometer for making mechanical analysis of soil. Agronomy
Journal 43: 434-438.
Cook, B.I., Anchukaitis, K.J., Touchan, R., Meko, D.M. &
Cook, E.R. 2016. Spatiotemporal
drought variability in the Mediterranean over the last 900 years.
Journal of Geophysical Research-Atmospheres 121(5): 2060-2074.
Cox, P.M., Betts, R.A., Jones, C.D., Spall,
S.A. & Totterdell, I.J. 2000.
Acceleration of global warming due to carbon-cycle feedbacks in a
coupled climate model. Nature 408: 184-187.
Curtin, D. & Campbell, C.A. 2008. Mineralizable nitrogen.
In Soil Sampling and Methods of Analysis, edited by Carter,
M.R. & Gregorich, E.G. Boca Raton: CRC Press. pp. 599-606.
Demiralay, I. 1993. Toprak fiziksel analizleri.
Atatźrk †niversitesi Ziraat Fakźltesi Yayőnlarő, Erzurum, Tźrkiye
(Unpublished).
Duchaufour, P. 1970. Precis de Pedologie. Masson et C1e, Editeurs, Paris. pp. 435-437.
Gškceoglu, M. 1979. Baző bitki organlarőndaki
azot, fosfor ve potasyumun bir vejetasyon periyodundaki değişimi.
Doğa Tarőm ve Ormancőlők 3: 192-199.
Guleryuz, G. & Everest, A. 2010. Nitrogen
mineralization in the soils of the conifer forest communities in
the Eastern Mediterranean. Ekoloji 19(74): 51-59.
Guntinas, M.E., Gil-Sotres, F., Leiros,
M.C. & Trasar-Cepeda, C. 2013. Sensitivity of soil respiration to moisture and temperature.
Journal of Soil Science and Plant Nutrition 13(2): 445-461.
Guntinas, M.E., Leiros, M.C., Trasar-Cepeda,
C. & Gil-Sotres, F. 2012. Effects of moisture and temperature on net soil nitrogen mineralization:
A laboratory study. European Journal of Soil Biology 48:
73-80.
Hopkins, D.W. 2008. Carbon mineralization,
In Soil Sampling and Methods of Analysis. 2nd ed.,
edited by Gregorich, E.G. & Beare, M.H. Boca Raton: CRC Press.
Howard, D.M. & Howard, P.J.A. 1993. Relationships
between CO2 evolution, moisture-content and temperature for
a range of soil types. Soil Biology and Biochemistry 25(11):
1537-1546.
Jackson, M.L. 1958. Soil Chemical Analysis.
Englewood Cliffs, New Jersey: PrenticeHall, Inc.
Jager, G. & Bruins, E.H. 1975. Effect
of repeated drying at different temperatures on soil organic matter
decomposition and characteristics, and on soil microflora.
Soil Biology and Biochemistry 7: 153-159.
Keskin, A. 2014. Kőzőldağ Yayla (Adana) ve ‚evresinin
Floraső. MSc. Thesis, Niğde University, Turkey (Unpublished).
p. 170.
Kirschbaum, M.U.F. 2000. Will changes in soil organic carbon
act as a positive or negative feedback on global warming? Biogeochemistry
48(1): 21-51.
Kleinbaum, D.G., Kupper, L.L., Muller, K.E. & Nizam, A.
1998. Applied Regression Analysis and Other Multivariable Methods.
California: Duxbury Press.
Komala, T. & Khun, T.C. 2014. Biological
carbon dioxide sequestration potential of Bacillus pumilus.
Sains Malaysiana 43(8): 1149-1156.
LemŽe, G. 1967. Investigation sur la mineralisation de lŐazote
et son evolution annuelle dans des humus
forestiers in situ. Oecologia 2: 285-324.
Li, Y., Liu, Y.H., Wang, Y.L., Niu, L.,
Xu, X. & Tian, Y.Q. 2014. Interactive
effects of soil temperature and moisture on soil N mineralization
in a Stipa krylovii grassland in Inner Mongolia, China. Journal
of Arid Land 6(5): 571-580.
Mande, K.H., Abdullah, A.M., Zaharin, A.A. & Ainuddin,
A.N. 2014. Drivers of soil carbon dioxide efflux
in a 70 years mixed trees species of tropical lowland forest, Peninsular
Malaysia. Sains Malaysiana 43(12): 1843-1853.
Neffar, S., Beddiar, A. & Chenchouni,
H. 2015. Effects of soil chemical
properties and seasonality on mycorrhizal status of prickly pear
(Opuntia ficus-indica) planted in hot arid steppe rangelands.
Sains Malaysiana 44(5): 671-680.
Olson, J.S. 1963. Energy storage and the
balance of producers and decomposers in ecological systems.
Ecology 44: 322-331.
Origin. v.8.0. OriginLab Corporation.
One Roundhouse Plaza, Northampton, MA, 01060 USA.
Qi, G., Wang, Q., Zhou, W., Ding, H., Wang, X., Qi, L., Wang,
Y., Li, S. & Dai, L. 2011. Moisture effect
on carbon and nitrogen mineralization in topsoil of Changbai Mountain,
Northeast China. Journal of Forest Science 57: 340-348.
Rey, A., Petsikos, C., Jarvis, P.G. &
Grace, J. 2005. Effect
of temperature and moisture on rates of carbon mineralization in
a Mediterranean oak forest soil under controlled and field conditions.
European Journal of Soil Science 56(5): 589-599.
Schaefer, R. 1967. Characteres et
evolution des activites microbiennes dans une chaine de sols hydromorphes
mesotrophiques de la plaine dŐAlsace. Revue dŐEcologie et
de Biologie du Sol 4: 567-592.
Sorensen, L.H. 1974. Rate of decomposition of organic matter
in soil as influenced by repeated air drying-rewetting and repeated
additions of organic material. Soil Biology and Biochemistry
6: 287292.
Weil, R.R., Islam, K.R., Stine, M.A., Gruver, J.B. & Samson-
Liebig, S.E. 2003. Estimating active carbon for soil quality assessment:
A simplified method for laboratory and field use. American Journal
of Alternative Agriculture 18(1): 3-17.
Yuste, J.C., Baldocchi, D.D., Gershenson, A., Goldstein, A.,
Misson, L. & Wong, S. 2007. Microbial soil
respiration and its dependency on carbon inputs, soil temperature
and moisture. Global Change Biology 13(9): 2018-2035.
Zengin, E., Sagliker, H.A. & Darici,
C. 2008. Carbon mineralization of Acacia cyanophylla
soils under the different temperature and humidity conditions.
Ekoloji 18(69): 1-6.
*Pengarang
untuk surat-menyurat; email: nkizildag@cu.edu.tr
|