Sains Malaysiana 46(5)(2017): 783–793
http://dx.doi.org/10.17576/jsm-2017-4605-13
Low Pressure
DC-Plasma System for the Modification of Polymeric Membrane Surfaces
(Sistem
DC-Plasma Tekanan Rendah untuk Pengubahsuaian
Permukaan Membran Polimer)
CHALAD YUENYAO1,2,3*,
THAWAT
CHITTRAKARN1,2,
YUTTHANA
TIRAWANICHAKUL1,2
& HIDEKI NAKAJIMA4
1Department of Physics,
Faculty of Science, Prince of Songkla University, Hatyai, Songkhla
90112
Thailand
2Membrane
Science and Technology Research Center, Department of Physics, Faculty
of Science
Prince
of Songkla University, Hatyai, Songkhla 90112, Thailand
3ThEP
Center, CHE, 328 Si Ayutthaya Rd., Bangkok 10400, Thailand
4Synchrotron
Light Research Institute (Public Organization), 111 University Avenue,
Muang District, Nakhon Ratchasima 30000, Thailand
Diserahkan:
27 Jun 2016/Diterima: 24 Oktober 2016
ABSTRACT
The main objectives of this work were to develop a lab-scale direct
current (DC) glow discharges plasma system for
modification of organic and inorganic membranes. Characteristics
of plasma system were presented under the discharge of five gases
(Ar, N2,
air, O2, and CO2).
A Langmuir double probe was used for the evaluation of the electron
temperature (Te) and electron density (ne) of
plasmas. The current and voltage (I-V) characteristic curves were
analyzed. Relationships between breakdown voltage (VB) of
gases and products of gas pressure and inter-electrode gap (pd)
were studied in form of Paschen curves. The results showed that
Te of
plasma in various gases was in the range of 4-13 eV, while the ne varied
between 108 and 109 cm-3.
The plasma generated at different gas pressure and applied voltage
is in the normal and abnormal modes. Finally, the constructed DC-plasma
system was utilized for modification of polymeric membrane surfaces.
Treatment time, discharge power and type of gas were varied. The
tailoring of membrane surfaces was analyzed through the water contact
angle and percent-weight loss (PWL)
measurements, DMTA, AFM, XPS and
FTIR
spectrum. It could be shown that DC-plasma
from this system can be used to modify the surface of polymeric
membranes.
Keywords: Breakdown voltage; characterization; DC discharge
plasma; Langmuir double probe; polymeric membrane
ABSTRAK
Objektif utama kajian ini adalah untuk membangunkan satu skala makmal
arus terus (DC) cahaya buangan sistem plasma untuk
pengubahsuaian membran organik dan bukan organik. Pencirian sistem
plasma telah ditunjukkan dengan penyingkiran lima gas (Ar, N2,
udara, O2 dan CO2).
Prob berganda Langmuir digunakan untuk menilai suhu elektron (Te)
dan ketumpatan elektron (ne) plasma. Pencirian arus
dan voltan (I-V) lengkung dianalisis. Hubungan antara gas pembelah
voltan (VB)
dan produk tekanan gas serta jurang antara elektrod (pd) telah dikaji
dalam bentuk lengkung Paschen. Keputusan menunjukkan bahawa Te plasma
dalam pelbagai gas adalah dalam lingkungan 4-13 eV, manakala ne berjulat
antara 108 dan 109 cm-3.
Plasma yang dihasilkan pada tekanan gas yang berbeza dan voltan
gunaan adalah dalam mod normal dan tidak normal. Kesimpulannya,
sistem DC-plasma
yang dibina digunakan untuk pengubahsuaian permukaan membran polimer.
Masa rawatan, kuasa pelepasan dan jenis gas telah berubah. Pengukuran
permukaan membran dianalisis melalui sudut sentuh air dan pengukuran
kehilangan peratus berat (PWL),
spektrum DMTA, AFM, XPS dan
FTIR.
Ia dapat ditunjukkan bahawa DC-plasma daripada sistem ini
boleh digunakan untuk mengubah suai permukaan membran polimer.
Kata kunci: Membran polimer; pecahan voltan; pencirian; penyingkiran DC plasma;
prob berganda Langmuir
RUJUKAN
Al-Itry, R., Lamnawar, K. & Maazouz, A. 2012. Improvement
of thermal stability, rheological and mechanical properties of PLA,
PBAT and their blends by reactive extrusion with functionalized
epoxy. Polymer Degradation and Stability 97(10): 1898-1914.
Bennett, J.R.J., Edgecock, T.R., Gray, S.A. & McFarland,
A.J. 2010. Tungsten material properties at high temperature and
high stress. Journal of Nuclear Materials. https://arxiv.org/
abs/1010.2905.
Bogaerts, A. 1996. Mathematical modeling of a direct current
glow discharge in argon. PhD Thesis, Universiteit Antwerpen (Unpublished).
Bryjak, M., Gancarz, I. & Pozniak, G. 2000. Plasma-modified
porous membranes: Review. Chemical Papers 54(6b): 496- 501.
Castro, R.M., Cirino, G.A., Verdonck, P., Maciel, H.S., Massi,
M., Pisani, M.B. & Mansano, R.D. 1999. A comparative study of
single and double Langmuir probe techniques for RF plasma characterization.
Contributions to Plasma Physics 39(3): 235-246.
Chen, S.H., Liou, R.M., Lin, Y.Y., Lai, C.L. & Lai, J.Y.
2009. Preparation and characterizations of asymmetric sulfonated
polysulfone membranes by wet phase inversion method. European
Polymer Journal 45(4): 1293-1301.
Chiad, B.T., Al-zubaydi, T.L., Khalaf, M.K. & Khudiar,
A.I. 2009. Construction and characterization of a low pressure plasma
reactor using dc glow discharge. Journal of Optoelectronics and
Biomedical Materials 1(3): 255-262.
Choi, S.H., Lee, M.K., Oh, S.J. & Koo, J.K. 2003. Gas sorption
and transport of ozone-treated polysulfone. Journal of Membrane
Science 221(1-2): 37-46.
Chu, P.K., Chen, J.Y., Wang, L.P. & Huang, N. 2002. Plasma-surface
modification of biomaterials. Materials Science and Engineering
R: Reports 36(5-6): 143-206.
DÕAgostino, R. 1990. Plasma Deposition, Treatment, and Etching
of Polymers. New York: Academic Press.
Elghazaly, M.H. & Solyman, S. 2007. Electron impact ionization
and excitation rate coefficients in the negative glow region of
a glow discharge. Journal of Quantitative Spectroscopy and Radiative
Transfer 103(2): 260-271.
Franz, G. 2009. Low Pressure Plasmas and Microstructuring
Technology. London: Springer Dordrecht Heidelberg. pp. 307-359.
Gancarz, I., Pozniak, G. & Bryjak, M. 2000. Modification
of polysulfone membranes: 3. Effect of nitrogen plasma. European
Polymer Journal 36: 1563-1569.
Hwang, J.W., Cho, K., Yoon, T.H. & Park, C.E. 2000. Effects
of molecular weight of polysulfone on phase separation behavior
for cyanate ester/polysulfone blends. Journal of Applied Polymer
Science 77: 921-927.
Johnson, E.O. & Malter, L. 1950. A floating double probe
method for measurements in gas discharges. Physical Review 80(1):
58-68.
Khulbe, K.C., Feng, C. & Matsuura, T. 2010. The art of
surface modification of synthetic polymeric membranes. Journal
of Applied Polymer Science 115: 855-895.
Kushwaha, O.S., Avadhani, C.V. & Singh, R.P. 2014. Effects
of UV rays on degradation and stability of high performance polymer
membranes. Advanced Materials Letters 5(5): 272-279.
Lieberman, M.A. & Lichtenberg, A.J. 2005. Principles
of Plasma Discharges and Materials Processing. 2nd ed. New Jersey:
John Wiley & Sons, Inc. pp. 450-470.
Lisovskiy, V.A., Yakovin, S.D. & Yegorenkov, V.D. 2000.
Low-pressure gas breakdown in uniform dc electric field. Journal
of Physics D: Applied Physics 33: 2722-2730.
Lee, W.J., Kim, D.S. & Kim, J.H. 2000. Preparation and
gas separation properties of asymmetric polysulfone membranes by
a dual bath method. Korean Journal of Chemical Engineering 17(2):
143-148.
Matsuyama, H., Teramoto, M. & Hirai, K. 1995. Effect of
plasma treatment on CO2 permeability
and selectivity of poly(dimethylsiloxane) membrane. Journal of
Membrane Science 99(2): 139-147.
Modarresi, S., Soltanieh, M., Mousavi, S.A. & Shabani,
I. 2012. Effect of low-frequency oxygen plasma on polysulfone membranes
for CO2/CH4 separation.
Journal of Applied Polymer Science 124: E199-E204.
Naz, M.Y., Ghaffar, A., Rehman, N.U., Naseer, S. & Zakaullah,
M. 2011. Double and triple Langmuir probes measurements in inductively
coupled nitrogen plasma. Progress in Electromagnetics Research
114: 113-128.
Naz, M.Y. & Ghaffar, A. 2011. Symmetric and asymmetric
double Langmuir probes characterization of radio frequency inductively
coupled nitrogen plasma. Progress in Electromagnetics Research
115: 207-221.
Nisha, M., Saji, K.J., Ajimsha, R.S., Joshy, N.V. & Jayaraj,
M.K. 2006. Characterization of radio frequency plasma using Langmuir
probe and optical emission spectroscopy. Journal of Applied Physics
99(3): 033304.
Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. & Gao,
C. 2009. Modification of surface properties of polypropylene (PP)
film using DC glow discharge air plasma. Applied Surface Science
255: 3965-3971.
Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. & Bousmina,
M. 2008. The effect of glow discharge plasma on the surface properties
of poly(ethylene terephthalate) (PET) film. Surface and Coatings
Technology 202(17): 4218-4226.
Pesek, S.C. & Koros, W.J. 1993. Aqueous quenched asymmetric
polysulfone membranes prepared by dry/wet phase separation. Journal
of Membrane Science 81: 71-88.
Raizer, Y.P. 1991. Gas Discharge Physics. Germany: Springer-
Verlag Berlin Heidelberg.
Roth, J.R. 2000. Industrial Plasma Engineering. Volume
1 Principle. Philadelphia: IOP Publishing Ltd.
Sanaee, Z., Mohajerzadeh, S., Zand, K., Gard, F.S. & Pajouhi,
H. 2011. Minimizing permeability of PET substrates using oxygen
plasma treatment. Applied Surface Science 257: 2218-2225.
Silberberg, M.S. 2006. Chemistry: The Molecular Nature of
Matter and Change. 4th ed. New York: McGraw-Hill Companies,
Inc. pp. 312-356.
Singh, S.B., Chand, N. & Patil, D.S. 2009. Langmuir probe
diagnostics of microwave electron cyclotron resonance (ECR) plasma.
Vacuum 83: 372-377.
Svorcik,
V., Kotal, V., Slepicka, P., Blahova, O., Spirkova, M., Sajdl, P.
& Hnatowicz, V. 2006. Modification of surface properties of
polyethylene by Ar plasma discharge. Nuclear Instruments and
Methods in Physics Research Section B 244: 365-372.
Vidaurre,
E.F.C., Achete, C.A., Simao, R.A. & Habert, A.C. 2001. Surface
modification of porous polymeric membranes by RF-plasma treatment.
Nuclear Instruments and Methods in Physics Research Section B
175-177: 732-736.
Vijayalakshmi,
K.A., Mekala, M., Yogan, C.P. & Pandiyaraj, K.N. 2012. Studies
on adhesive properties of polypropylene (PP) and polycarbonate (PC)
film surfaces using DC glow discharge plasma. International Journal
of Physical Science 7(15): 2264-2273.
Volkov,
V.V., Ibragimov, R.G., Abdullin, I.Sh., Gallyamov, R.T., Ovcharova,
A.A. & Bildyukevich, A.V. 2016. Modification of polysulfone
porous hollow fiber membranes by air plasma treatment. Journal
of Physics: Conference Series 751: doi: 10.1088/1742-6596/751/1/012028.
Wavhal,
D.S. & Fisher, E.R. 2005. Modification of polysulfone ultrafiltration
membranes by CO2 plasma treatment. Desalination 172: 189-205.
Yang,
L., Chen, J., Guo, Y. & Zhang, Z. 2009. Surface modification
of a biomedical polyethylene terephthalate (PET) by air plasma.
Applied Surface Science 255: 4446-4451.
Yuenyao,
C., Chittrakarn, T., Tirawanichakul, Y., Saeung, P. & Taweepreda,
W. 2012. The effects of argon and oxygen plasmas on the surface
morphology of polysulfone membrane. Thai Journal of Physics Series
8: 41-44.
*Pengarang untuk surat-menyurat;
email: chalady_2012@hotmail.com
|