Sains Malaysiana 46(5)(2017): 773–782
http://dx.doi.org/10.17576/jsm-2017-4605-12
Preparation and Characterization of Impregnated
Magnetic Particles on Oil Palm Frond Activated Carbon for Metal
Ions Removal
(Penyediaan dan Pencirian Zarah Magnet Terjejal
ke atas Pelepah Kelapa Sawit Karbon Aktifan untuk Penyingkiran Ion
Logam)
MUZAKKIR MOHAMMAD ZAINOL,
NOR
AISHAH
SAIDINA
AMIN*
& MOHD ASMADI
Chemical Reaction Engineering Group (CREG), Faculty of Chemical
and Energy Engineering
Universiti Teknologi Malaysia, 81300 UTM Skudai, Johor Darul
Takzim, Malaysia
Diserahkan: 19 Julai 2016/Diterima: 24 Oktober 2016
ABSTRACT
The magnetic adsorbents i.e. oil palm frond-magnetic particles (OPF-MP)
and oil palm frond activated carbon-magnetic particles (OPFAC-MP)
have been prepared by impregnation of iron oxide via co-precipitation
method. The magnetic adsorbents and their parent materials were
characterized using Fourier transform infrared (FTIR), thermogravimetric analysis
(TGA), field emission scanning electron microscopy (FESEM),
Brunauer Emmett Teller (BET), Barrett, Joyner & Halenda (BJH)
and t-plot method, x-ray diffraction (XRD) and also using vibrating
sample magnetometry (VSM) to study their properties and surface
chemistry. The activated carbon magnetic adsorbent confers high
surface area of 700 m2/g with amorphous structure and
magnetic properties of 2.76 emu/g. The OPF-MP and OPFAC-MP were
then applied in adsorption study for ions removal of Pb(II), Zn(II)
and Cu(II). OPFAC-MP
has shown high removal efficiency of 100 % with adsorption
capacity up to 15 mg/g of Pb(II), Zn(II) and Cu(II) ions compared
to OPF-MP.
In addition, the magnetic adsorbents were also compared with their
parent materials to observe the effect of magnetic particles. Accordingly,
the impregnation of magnetic particles enhances the metal ions adsorption
comparing to their parent materials.
Keywords: Activated carbon; adsorption; magnetic
particle; metal ions; oil palm frond
ABSTRAK
Bahan penjerap magnet iaitu zarah magnet pelepah kelapa sawit (OPF-MP)
dan zarah magnet pelepah kelapa sawit zarah karbon aktifan (OPFAC-MP)
telah disediakan dengan menjejal besi oksida melalui kaedah pemendakan
bersama. Bahan penjerap magnet dan bahan induknya telah dicirikan
menggunakan transformasi Fourier inframerah (FTIR), analisis termogravimetri
(TGA),
mikroskop elektron imbasan pancaran medan (FESEM),
Brunauer Emmett Teller (BET), Barrett, Joyner & Halenda (BJH)
dan kaedah t-plot, pembelauan sinar-x (XRD) dan juga menggunakan sampel
magnetometri bergetar (VSM) untuk mengkaji sifat dan
permukaan kimianya. Bahan penjerap magnet karbon aktifan menganugerahkan
kawasan permukaan tinggi seluas 700 m2/g dengan struktur
amorfus dan sifat magnet 2.76 emu/g. OPF-MP dan OPFAC-MP kemudiannya
digunakan dalam kajian penjerapan untuk penyingkiran ion Pb(II),
Zn(II) dan Cu(II). OPFAC-MP telah menunjukkan kecekapan penyingkiran tinggi
sebanyak 100% dengan kapasiti penjerapan sehingga 15 mg/g untuk
ion Pb(II), Zn(II) dan Cu(II) berbanding OPF-MP. Di samping itu, bahan
penjerap magnet juga telah dibandingkan dengan bahan induknya untuk
memerhatikan kesan zarah magnet. Sehubungan dengan itu, zarah magnet
terjejal meningkatkan penjerapan ion logam berbanding bahan induknya.
Kata kunci: Ion logam; karbon;
magnet zarah; pelepah kelapa sawit; penjerapan
RUJUKAN
AbdurRahman, F.B., Akter, M. & Abedin, M.Z.
2013. Dyes removal from textile wastewater using orange peels. Int.
J. Sci. Technol. Res. 2: 2277-8616.
Alam, Z., Muyibi, S.A. & Toramae, J. 2007.
Statistical optimization of adsorption processes for removal of
2,4-dichlorophenol by activated carbon derived from oil palm empty
fruit bunches. Journal of Environmental Sciences 19(6): 674-677.
Bulut, Y. & Tez, Z. 2007. Removal of heavy
metals from aqueous solution by sawdust adsorption. Journal of
Environmental Sciences 19(2): 160-166.
Chang, Y.C. & Chen, D.H. 2005. Preparation
and adsorption properties of monodisperse chitosan-bound Fe3O4
magnetic nanoparticles for removal of Cu(II) ions. Journal of
Colloid and Interface Science 283: 446-451.
Chen, Y., Huang, B., Huang, M. & Cai, B. 2011.
On the preparation and characterization of activated carbon from
mangosteen shell. Journal of the Taiwan Institute of Chemical
Engineers 42(5): 837-842.
Chertoka, B., Moffatb, B.A., Davida, A.E., Yua,
F., Bergemannc, C., Rossb, B.D. & Yanga, V.C. 2008. Iron oxide
nanoparticles as a drug delivery vehicle for MRI monitored magnetic
targeting of brain tumors. Biomaterials 29: 487-496.
Chia, C.H., Razali, N.F., Sajab, M.S., Zakaria,
S., Huang, N.M. & Lim, H.N. 2013. Methylene blue adsorption
on graphene oxide. Sains Malaysiana 42(6): 819-826.
Ding, S., Xing, Y., Radosz, M. & Shen, Y. 2006.
Magnetic nanoparticle supported catalyst for atom transfer radical
polymerization. Macromolecules 39(6399-6405).
Donia, A.M., Atia, A.A. & Abouzayed, F.I. 2012.
Preparation and characterization of nano-magnetic cellulose with
fast kinetic properties towards the adsorption of some metal ions.
Chemical Engineering Journal 191(0): 22-30.
Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li,
Q. & Wang, Y. 2013. Preparation of high surface area-activated
carbon from lignin of papermaking black liquor by KOH activation
for Ni(II) adsorption. Chemical Engineering Journal 217:
345-353.
Ge, F., Li, M.M., Ye, H. & Zhao, B.X. 2012.
Effective removal of heavy metal ions Cd2+,
Zn2+, Pb2+, Cu2+ from
aqueous solution by polymer-modified magnetic nanoparticles. Journal
of Hazardous Materials 211-212(0): 366-372.
Gill, C.S., Price, B.A. & Jones, C.W. 2007.
Sulfonic acid-functionalized silica-coated magnetic nanoparticle
catalysts. Journal of Catalysis 251: 145-152.
Guo, X., Zhang, S. & Shan, X.Q. 2008. Adsorption
of metal ions on lignin. Journal of Hazardous Materials 151(1):
134-142.
Gurten,
I.I., Ozmak, M., Yagmur, E. & Aktas, Z. 2012. Preparation and
characterisation of activated carbon from waste tea using K2CO3.
Biomass and Bioenergy 37(0): 73-81.
Hara,
M. 2010. Biodiesel production by amorphous carbon bearing SO3H,
COOH and phenolic OH groups, a solid br¿nsted acid catalyst. Topics
in Catalysis 53(11-12): 805- 810.
Hu,
S., Guan, Y., Wang, Y. & Han, H. 2011. Nano-magnetic catalyst
KF/CaO–Fe3O4 for biodiesel production.
Applied Energy 88(8): 2685-2690.
Hua,
M.Y., Yang, H.W., Chuang, C.K., Tsai, R.Y., Chen, W.J., Chuang,
K.L., Chang, Y.H., Chuang, H.C. & Pang, S.T. 2010. Magnetic-nanoparticle-modified
paclitaxel for targeted therapy for prostate cancer. Biomaterials
31: 7355-7363.
Kaşgšz,
H., …zgŸmŸş, S. & Orbay, M. 2003. Modified polyacrylamide
hydrogels and their application in removal of heavy metal ions.
Polymer 44(6): 1785-1793.
Liao,
M.H. & Chen, D.H. 2002. Preparation and characterization of
a novel magnetic nano-adsorbent. Journal of Materials Chemistry
12: 3654-3659.
Liu,
C., Lv, P., Yuan, Z., Yan, F. & Luo, W. 2010. The nanometer
magnetic solid base catalyst for production of biodiesel. Renewable
Energy 35(7): 1531-1536.
Malik,
P. 2004. Dye removal from wastewater using activated carbon developed
from sawdust: Adsorption equilibrium and kinetics. Journal of
Hazardous Materials 113(1): 81-88.
Mornet,
S.P., Vasseur, S.B., Grasset, F. & Duguet, E. 2004. Magnetic
nanoparticle design for medical diagnosis and therapy. J. Mater.
Chem. 14: 2161-2175.
Okamura,
M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T.,
Hara, M. & Hayashi, S. 2006. Acid-catalyzed reactions on flexible
polycyclic aromatic carbon in amorphous carbon. Chemistry of
Materials 18(13): 3039-3045.
Oliveira,
L.C.A., Rios, R.V.R.A., Fabris, J.D., Garg, V., Sapag, K. &
Lago, R.M. 2002. Activated carbon/iron oxide magnetic composites
for the adsorption of contaminants in water. Carbon 40(12):
2177-2183.
Panneerselvam,
P., Morad, N. & Tan, K.A. 2011. Magnetic nanoparticle (Fe3O4)
impregnated onto tea waste for the removal of nickel(II) from aqueous
solution. Journal of Hazardous Materials 186(1): 160-168.
Park,
H.J., McConnell, J.T., Boddohi, S., Kipper, M.J. & Johnson,
P.A. 2011. Synthesis and characterization of enzyme-magnetic nanoparticle
complexes: Effect of size on activity and recovery. Colloids
and Surfaces B: Biointerfaces 83(2): 198-203.
Perez,
J.M., OÕLoughin, T., Simeone, F.J., Weissleder, R. & Josephson,
L. 2002. DNA-based magnetic nanoparticle assembly acts as a magnetic
relaxation nanoswitch allowing screening of DNA-cleaving agents.
Journal of the American Chemical Society 124(12): 2856-2857.
Poljanšek,
I. & Krajnc, M. 2005. Characterization of phenol-formaldehyde
prepolymer resins by in line FT-IR spectroscopy. Acta Chimica
Slovenica 52(0): 238-244.
Rudge,
S.R., Kurtz, T.L., Vessely, C.R., Catterall, L.G. & Williamson,
D.L. 2000. Preparation, characterization, and performance of magnetic
iron-carbon composite microparticles for chemotherapy. Biomaterials
21: 1411- 1420.
Stoeva,
S.I., Huo, F., Lee, J.S. & Mirkin, C.A. 2005. Three-layer composite
magnetic nanoparticle probes for DNA. Journal of the American
Chemical Society 127(44): 15362-15363.
Tural,
B., …zkan, N. & Volkan, M. 2009. Preparation and characterization
of polymer coated superparamagnetic magnetite nanoparticle agglomerates.
Journal of Physics and Chemistry of Solids 70(5): 860-866.
Vu,
T.A., Le, G.H., Dao, C.D., Dang, L.Q., Nguyen, K.T., Nguyen, Q.K.,
Dang, P.T., Tran, H.T., Duong, Q.T. & Nguyen, T.V. 2015. Arsenic
removal from aqueous solutions by adsorption using novel MIL-53
(Fe) as a highly efficient adsorbent. RSC Advances 5(7):
5261-5268.
Xu,
F., Yu, J., Tesso, T., Dowell, F. & Wang, D. 2013. Qualitative
and quantitative analysis of lignocellulosic biomass using infrared
techniques: A mini-review. Applied Energy 104: 801-809.
Yaacob,
W.Z.W. & Samsudin, A.R. 2007. Sorption parameters of Pb and
Cu on natural clay soils from Selangor, Malaysia. Sains Malaysiana
36(2): 149-157.
Yao,
S., Liu, Z. & Shi, Z. 2014. Arsenic removal from aqueous solutions
by adsorption onto iron oxide/activated carbon magnetic composite.
J. Environ. Health Sci. Eng. 12: 1-8.
Yao,
Y., Miao, S., Liu, S., Ma, L.P., Sun, H. & Wang, S. (2012).
Synthesis, Characterization, and Adsorption Properties of Magnetic
Fe3O4@Graphene Nanocomposite. Chemical
Engineering Journal 184(0): 326-332.
Zainol,
M.M., Amin, N.A.S. & Asmadi, M. 2015. Synthesis and characterization
of carbon cryogel microspheres from lignin-furfural mixtures for
biodiesel production. Bioresource Technology 190(0): 44-50.
Zainol,
M.M., Asmadi, M. & Amin, N.A.S. 2014. Impregnation of magnetic
particles on oil palm shell activated carbon for removal of heavy
metal ions from aqueous solution. Jurnal Teknologi 72(1):
7-11.
*Pengarang
untuk surat-menyurat; email: noraishah@cheme.utm.my
|