Sains Malaysiana 46(5)(2017): 773–782

http://dx.doi.org/10.17576/jsm-2017-4605-12

 

Preparation and Characterization of Impregnated Magnetic Particles on Oil Palm Frond Activated Carbon for Metal Ions Removal

(Penyediaan dan Pencirian Zarah Magnet Terjejal ke atas Pelepah Kelapa Sawit Karbon Aktifan untuk Penyingkiran Ion Logam)

 

MUZAKKIR MOHAMMAD ZAINOL, NOR AISHAH SAIDINA AMIN* & MOHD ASMADI

 

Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Energy Engineering

Universiti Teknologi Malaysia, 81300 UTM Skudai, Johor Darul Takzim, Malaysia

 

Diserahkan: 19 Julai 2016/Diterima: 24 Oktober 2016

 

ABSTRACT

The magnetic adsorbents i.e. oil palm frond-magnetic particles (OPF-MP) and oil palm frond activated carbon-magnetic particles (OPFAC-MP) have been prepared by impregnation of iron oxide via co-precipitation method. The magnetic adsorbents and their parent materials were characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), Brunauer Emmett Teller (BET), Barrett, Joyner & Halenda (BJH) and t-plot method, x-ray diffraction (XRD) and also using vibrating sample magnetometry (VSM) to study their properties and surface chemistry. The activated carbon magnetic adsorbent confers high surface area of 700 m2/g with amorphous structure and magnetic properties of 2.76 emu/g. The OPF-MP and OPFAC-MP were then applied in adsorption study for ions removal of Pb(II), Zn(II) and Cu(II). OPFAC-MP has shown high removal efficiency of 100 % with adsorption capacity up to 15 mg/g of Pb(II), Zn(II) and Cu(II) ions compared to OPF-MP. In addition, the magnetic adsorbents were also compared with their parent materials to observe the effect of magnetic particles. Accordingly, the impregnation of magnetic particles enhances the metal ions adsorption comparing to their parent materials.

Keywords: Activated carbon; adsorption; magnetic particle; metal ions; oil palm frond

 

ABSTRAK

Bahan penjerap magnet iaitu zarah magnet pelepah kelapa sawit (OPF-MP) dan zarah magnet pelepah kelapa sawit zarah karbon aktifan (OPFAC-MP) telah disediakan dengan menjejal besi oksida melalui kaedah pemendakan bersama. Bahan penjerap magnet dan bahan induknya telah dicirikan menggunakan transformasi Fourier inframerah (FTIR), analisis termogravimetri (TGA), mikroskop elektron imbasan pancaran medan (FESEM), Brunauer Emmett Teller (BET), Barrett, Joyner & Halenda (BJH) dan kaedah t-plot, pembelauan sinar-x (XRD) dan juga menggunakan sampel magnetometri bergetar (VSM) untuk mengkaji sifat dan permukaan kimianya. Bahan penjerap magnet karbon aktifan menganugerahkan kawasan permukaan tinggi seluas 700 m2/g dengan struktur amorfus dan sifat magnet 2.76 emu/g. OPF-MP dan OPFAC-MP kemudiannya digunakan dalam kajian penjerapan untuk penyingkiran ion Pb(II), Zn(II) dan Cu(II). OPFAC-MP telah menunjukkan kecekapan penyingkiran tinggi sebanyak 100% dengan kapasiti penjerapan sehingga 15 mg/g untuk ion Pb(II), Zn(II) dan Cu(II) berbanding OPF-MP. Di samping itu, bahan penjerap magnet juga telah dibandingkan dengan bahan induknya untuk memerhatikan kesan zarah magnet. Sehubungan dengan itu, zarah magnet terjejal meningkatkan penjerapan ion logam berbanding bahan induknya.

 

Kata kunci: Ion logam; karbon; magnet zarah; pelepah kelapa sawit; penjerapan

 

RUJUKAN

AbdurRahman, F.B., Akter, M. & Abedin, M.Z. 2013. Dyes removal from textile wastewater using orange peels. Int. J. Sci. Technol. Res. 2: 2277-8616.

Alam, Z., Muyibi, S.A. & Toramae, J. 2007. Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. Journal of Environmental Sciences 19(6): 674-677.

Bulut, Y. & Tez, Z. 2007. Removal of heavy metals from aqueous solution by sawdust adsorption. Journal of Environmental Sciences 19(2): 160-166.

Chang, Y.C. & Chen, D.H. 2005. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Colloid and Interface Science 283: 446-451.

Chen, Y., Huang, B., Huang, M. & Cai, B. 2011. On the preparation and characterization of activated carbon from mangosteen shell. Journal of the Taiwan Institute of Chemical Engineers 42(5): 837-842.

Chertoka, B., Moffatb, B.A., Davida, A.E., Yua, F., Bergemannc, C., Rossb, B.D. & Yanga, V.C. 2008. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29: 487-496.

Chia, C.H., Razali, N.F., Sajab, M.S., Zakaria, S., Huang, N.M. & Lim, H.N. 2013. Methylene blue adsorption on graphene oxide. Sains Malaysiana 42(6): 819-826.

Ding, S., Xing, Y., Radosz, M. & Shen, Y. 2006. Magnetic nanoparticle supported catalyst for atom transfer radical polymerization. Macromolecules 39(6399-6405).

Donia, A.M., Atia, A.A. & Abouzayed, F.I. 2012. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chemical Engineering Journal 191(0): 22-30.

Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q. & Wang, Y. 2013. Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chemical Engineering Journal 217: 345-353.

Ge, F., Li, M.M., Ye, H. & Zhao, B.X. 2012. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. Journal of Hazardous Materials 211-212(0): 366-372.

Gill, C.S., Price, B.A. & Jones, C.W. 2007. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. Journal of Catalysis 251: 145-152.

Guo, X., Zhang, S. & Shan, X.Q. 2008. Adsorption of metal ions on lignin. Journal of Hazardous Materials 151(1): 134-142.

Gurten, I.I., Ozmak, M., Yagmur, E. & Aktas, Z. 2012. Preparation and characterisation of activated carbon from waste tea using K2CO3. Biomass and Bioenergy 37(0): 73-81.

Hara, M. 2010. Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid br¿nsted acid catalyst. Topics in Catalysis 53(11-12): 805- 810.

Hu, S., Guan, Y., Wang, Y. & Han, H. 2011. Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Applied Energy 88(8): 2685-2690.

Hua, M.Y., Yang, H.W., Chuang, C.K., Tsai, R.Y., Chen, W.J., Chuang, K.L., Chang, Y.H., Chuang, H.C. & Pang, S.T. 2010. Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31: 7355-7363.

Kaşgšz, H., …zgŸmŸş, S. & Orbay, M. 2003. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions. Polymer 44(6): 1785-1793.

Liao, M.H. & Chen, D.H. 2002. Preparation and characterization of a novel magnetic nano-adsorbent. Journal of Materials Chemistry 12: 3654-3659.

Liu, C., Lv, P., Yuan, Z., Yan, F. & Luo, W. 2010. The nanometer magnetic solid base catalyst for production of biodiesel. Renewable Energy 35(7): 1531-1536.

Malik, P. 2004. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. Journal of Hazardous Materials 113(1): 81-88.

Mornet, S.P., Vasseur, S.B., Grasset, F. & Duguet, E. 2004. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14: 2161-2175.

Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. & Hayashi, S. 2006. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials 18(13): 3039-3045.

Oliveira, L.C.A., Rios, R.V.R.A., Fabris, J.D., Garg, V., Sapag, K. & Lago, R.M. 2002. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40(12): 2177-2183.

Panneerselvam, P., Morad, N. & Tan, K.A. 2011. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. Journal of Hazardous Materials 186(1): 160-168.

Park, H.J., McConnell, J.T., Boddohi, S., Kipper, M.J. & Johnson, P.A. 2011. Synthesis and characterization of enzyme-magnetic nanoparticle complexes: Effect of size on activity and recovery. Colloids and Surfaces B: Biointerfaces 83(2): 198-203.

Perez, J.M., OÕLoughin, T., Simeone, F.J., Weissleder, R. & Josephson, L. 2002. DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. Journal of the American Chemical Society 124(12): 2856-2857.

Poljanšek, I. & Krajnc, M. 2005. Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica 52(0): 238-244.

Rudge, S.R., Kurtz, T.L., Vessely, C.R., Catterall, L.G. & Williamson, D.L. 2000. Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21: 1411- 1420.

Stoeva, S.I., Huo, F., Lee, J.S. & Mirkin, C.A. 2005. Three-layer composite magnetic nanoparticle probes for DNA. Journal of the American Chemical Society 127(44): 15362-15363.

Tural, B., …zkan, N. & Volkan, M. 2009. Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates. Journal of Physics and Chemistry of Solids 70(5): 860-866.

Vu, T.A., Le, G.H., Dao, C.D., Dang, L.Q., Nguyen, K.T., Nguyen, Q.K., Dang, P.T., Tran, H.T., Duong, Q.T. & Nguyen, T.V. 2015. Arsenic removal from aqueous solutions by adsorption using novel MIL-53 (Fe) as a highly efficient adsorbent. RSC Advances 5(7): 5261-5268.

Xu, F., Yu, J., Tesso, T., Dowell, F. & Wang, D. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy 104: 801-809.

Yaacob, W.Z.W. & Samsudin, A.R. 2007. Sorption parameters of Pb and Cu on natural clay soils from Selangor, Malaysia. Sains Malaysiana 36(2): 149-157.

Yao, S., Liu, Z. & Shi, Z. 2014. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J. Environ. Health Sci. Eng. 12: 1-8.

Yao, Y., Miao, S., Liu, S., Ma, L.P., Sun, H. & Wang, S. (2012). Synthesis, Characterization, and Adsorption Properties of Magnetic Fe3O4@Graphene Nanocomposite. Chemical Engineering Journal 184(0): 326-332.

Zainol, M.M., Amin, N.A.S. & Asmadi, M. 2015. Synthesis and characterization of carbon cryogel microspheres from lignin-furfural mixtures for biodiesel production. Bioresource Technology 190(0): 44-50.

Zainol, M.M., Asmadi, M. & Amin, N.A.S. 2014. Impregnation of magnetic particles on oil palm shell activated carbon for removal of heavy metal ions from aqueous solution. Jurnal Teknologi 72(1): 7-11.

 

 

*Pengarang untuk surat-menyurat; email: noraishah@cheme.utm.my

 

 

 

 

sebelumnya