Sains Malaysiana 46(5)(2017): 803–815
http://dx.doi.org/10.17576/jsm-2017-4605-15
Darcian
Natural Convection in an Inclined Trapezoidal Cavity Partly Filled
with a Porous Layer and Partly with a Nanofluid Layer
(Perolakan
Semula Jadi Darcian dalam Rongga Trapezium Condong yang Sebahagiannya
Dipenuhi
dengan Lapisan
Berliang dan Sebahagiannya dengan Lapisan Nanobendalir)
A.I. ALSABERY1,
A.J.
CHAMKHA2,3,
H.
SALEH1,
I.
HASHIM1*
& B. CHANANE4
1School of Mathematical
Sciences, Faculty of Science and Technology,Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Mechanical
Engineering, Prince Mohammad Bin Fahd University
P.O. Box 1664, Al Khobar 31952, Saudi Arabia
3Prince Sultan Endowment
for Energy and Environment, Prince Mohammad Bin Fahd University
Al-Khobar 31952, Saudi Arabia
4Department
of Mathematics and Statistics, King Fahd University
of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
Diserahkan: 22 Februari 2016/Diterima: 1 November 2016
ABSTRACT
The problem of Darcian natural convection in a trapezoidal cavity
partly filled with porous layer and partly with nanofluid layer
is studied numerically using finite difference method. The left
slopping wall is maintained at a constant hot temperature and the
right slopping wall is maintained at a constant cold temperature,
while the horizontal walls are adiabatic. Water-based nanofluids
with Ag or Cu or TiO2 nanoparticles
are chosen for the investigation. The governing parameters of this
study are the Rayleigh number (104 ˛ Ra ˛ 107),
Darcy number (10–5 ˛ Da ˛ 10–3),
nanoparticle volume fraction (0 ˛ φ ˛ 0.2), porous layer thickness
(0.3 ˛ S ˛ 0,7), the side wall inclination angle (0ˇ ˛ ϕ ˛ 21.8ˇ) and the inclination angle of
the cavity (0ˇ ˛ ϖ ˛ 90ˇ). Explanation for the influence
of various above-mentioned parameters on streamlines, isotherms
and overall heat transfer is provided on the basis of thermal conductivities
of nanoparticles, water and porous medium. It is shown that convection
increases remarkably by the addition of silver-water nanofluid and
the heat transfer rate is affected by the inclination angle of the
cavity variation. The results have possible applications in heat-removal
and heat-storage fluid-saturated porous systems.
Keywords: Darcy model; nanofluid; natural convection; partially filled;
porous media
ABSTRAK
Masalah perolakan semula jadi Darcian dalam rongga trapezium yang
sebahagiannya dipenuhi dengan lapisan berliang dan sebahagiannya
dengan lapisan nanobendalir dikaji secara berangka menggunakan kaedah
perbezaan terhingga. Dinding cerun sebelah kiri dikekalkan pada
suhu panas tetap yang berterusan dan dinding cerun kanan dikekalkan
pada suhu sejuk berterusan, manakala dinding mendatar secara adiabatik.
Nanobendalir berasaskan air dengan zarah nano Ag atau Cu atau TiO
telah dipilih untuk kajian. Parameter penentu kajian ini adalah
nombor Rayleigh (104 ≤ Ra ≤ 107),
nombor Darcy (10–5 ≤ Da ≤ 10–3),
pecahan isi padu zarah nano (0 ≤ φ ≤ 0.2), ketebalan
lapisan berliang (0.3 ≤ S ≤ 0,7), sebelah dinding sudut condong
(0° ≤ ϕ ≤ 21.8°) dan sudut condong berongga
(0° ≤ ϖ ≤ 90°). Penjelasan untuk pengaruh
pelbagai parameter yang tersebut ke atas garis strim, isoterma dan
pemindahan haba keseluruhan juga disediakan berdasarkan terma kekonduksian
zarah nano, air dan medium berliang. Ia menunjukkan bahawa perolakan
meningkat secara luar biasa dengan penambahan bendalir nano air-perak
dan kadar pemindahan haba dipengaruhi oleh sudut condong variasi
berongga. Keputusan ini mempunyai potensi pengaplikasian dalam sistem
pemindahan haba dan penyimpanan haba cecair-tepu berliang.
Kata kunci: Nanobendalir;
media berliang; model Darcy; perolakan semula jadi; sebahagiannya
diisi
RUJUKAN
Abouali, O. & Falahatpisheh, A. 2009. Numerical investigation
of natural convection of al2o3 nanofluid in vertical annuli. Heat and Mass
Transfer 46(1): 15-23.
Al-Nimr, M. & Alkam, M. 1998. Unsteady non-Darcian fluid
flow in parallel-plates channels partially filled with porous materials.
Heat and Mass Transfer 33(4): 315-318.
Alloui, Z., Vasseur, P. & Reggio, M. 2011. Natural convection
of nanofluids in a shallow cavity heated from below. International
Journal of Thermal Sciences 50(3): 393-385.
Alsabery, A., Saleh, H., Arbin, N. & Hashim, I. 2015. Unsteady
natural convection in a square cavity partially filled with porous
media using a thermal non-equilibrium model. International Journal
of Mathematical, Computational, Physical and Quantum Engineering
9(1): 2-7.
Beavers, G.S. & Joseph, D.D. 1967. Boundary conditions
at a naturally permeable wall. Journal of Fluid Mechanics 30(01):
197-207.
Beckermann, C., Ramadhyani, S. & Viskanta, R. 1987. Natural
convection flow and heat transfer between a fluid layer and a porous
layer inside a rectangular enclosure. Journal of Heat transfer
109(2): 363-370.
Beckermann, C., Viskanta, R. & Ramadhyani, S. 1988. Natural
convection in vertical enclosures containing simultaneously fluid
and porous layers. Journal of Fluid Mechanics 186: 257-284.
Bejan, A., Dincer, I., Lorente, S., Miguel, A. & Reis,
H. 2013. Porous and Complex Flow Structures in Modern Technologies.
New York: Springer Science & Business Media.
Chamkha, A.J. & Ismael, M.A. 2014. Natural convection in
differentially heated partially porous layered cavities filled with
a nanofluid. Numerical Heat Transfer, Part A: Applications 65(11):
1089-1113.
Chamkha, A.J., Selimefendigil, F. & Ismael, M.A. 2016.
Mixed convection in a partially layered porous cavity with inner
rotating cylinder. Numerical Heat Transfer, Part A 69: 659-
675.
Chen, X., Yu, P., Sui, Y., Winoto, S. & Low, H. 2009. Natural
convection in a cavity filled with porous layers on the top and
bottom walls. Transport in Porous Media 78(2): 259-276.
Goyeau, B., Lhuillier, D., Gobin, D. & Velarde, M. 2003.
Momentum transport at a fluid-porous interface. International
Journal of Heat and Mass Transfer 46(21): 4071-4081.
Heris, S.Z., Pour, M.B., Mahian, O. & Wongwises, S. 2014.
A comparative experimental study on the natural convection heat
transfer of different metal oxide nanopowders suspended in turbine
oil inside an inclined cavity. International Journal of Heat
and Mass Transfer 73: 231-238.
Jahanshahi, M., Hosseinizadeh, S., Alipanah, M., Dehghani,
A. & Vakilinejad, G. 2010. Numerical simulation of free convection
based on experimental measured conductivity in a square cavity using
water/sio2 nanofluid. International Communications in
Heat and Mass Transfer 37(6): 687-694.
Jiang, H., Zhang, Q. & Shi, L. 2015. Effective thermal
conductivity of carbon nanotube-based nanofluid. Journal of the
Taiwan Institute of Chemical Engineers 55: 76-81.
Jou, R.Y. & Tzeng, S.C. 2006. Numerical research of nature
convective heat transfer enhancement filled with nanofluids in rectangular
enclosures. International Communications in Heat and Mass Transfer
33(6): 727-736.
Kakac, S. & Pramuanjaroenkij, A. 2009. Review of convective
heat transfer enhancement with nanofluids. International Journal
of Heat and Mass Transfer 52(13): 3187-3196.
Karyakin, Y.E. 1989. Transient natural convection in prismatic
enclosures of arbitrary cross-section. International Journal
of Heat and Mass Transfer 32(6): 1095-1103.
Khanafer, K., Vafai, K. & Lightstone, M. 2003. Buoyancy-driven
heat transfer enhancement in a two-dimensional enclosure utilizing
nanofluids. International Journal of Heat and Mass Transfer 46(19):
3639-3653.
Lee, T. 1984. Computational and experimental studies of convective
fluid motion and heat transfer in inclined non-rectangular enclosures.
International Journal of Heat and Fluid Flow 5(1): 29-36.
Mharzi, M., Daguenet, M. & Daoudi, S. 2000. Thermosolutal
natural convection in a vertically layered fluid-porous medium heated
from the side. Energy Conversion and Management 41(10): 1065-1090.
Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak,
A. 2016. Free convection boundary layer flow on a horizontal circular
cylinder in a nanofluid with viscous dissipation. Sains Malaysiana
45(2): 289-296.
Nasrin, R. & Parvin, S. 2012. Investigation of buoyancy-driven
flow and heat transfer in a trapezoidal cavity filled with water–cu nanofluid. International
Communications in Heat and Mass Transfer 39(2): 270-274.
Nield, D.A. & Bejan, A. 2006. Convection in Porous Media.
New York: Springer Science & Business Media.
Pop, I. & Ingham, D.B. 2001. Convective Heat Transfer:
Mathematical and Computational Modelling of Viscous Fluids and Porous
Media. Cluj: Elsevier.
Poulikakos, D., Bejan, A., Selimos, B. & Blake, K. 1986.
High rayleigh number convection in a fluid overlaying a porous bed.
International Journal of Heat and Fluid Flow 7(2): 109-116.
Putra, N., Roetzel, W. & Das, S.K. 2003. Natural convection
of nano-fluids. Heat and Mass Transfer 39(8-9): 775-784.
Saleh, H., Roslan, R. & Hashim, I. 2011. Natural convection
heat transfer in a nanofluid-filled trapezoidal enclosure. International
Journal of Heat and Mass Transfer 54(1): 194-201.
Santra, A.K., Sen, S. & Chakraborty, N. 2008. Study of
heat transfer augmentation in a differentially heated square cavity
using copper-water nanofluid. International Journal of Thermal
Sciences 47(9): 1113-1122.
Sathe, S., Lin, W.Q. & Tong, T. 1988. Natural convection
in enclosures containing an insulation with a permeable fluid-porous
interface. International Journal of Heat and Fluid Flow 9(4):
389-395.
Sheremet, M.A., Grosan, T. & Pop, I. 2015. Free convection
in a square cavity filled with a porous medium saturated by nanofluid
using Tiwari and DasŐ nanofluid model. Transport in Porous Media
106(3): 595-610.
Singh, A. & Thorpe, G. 1995. Natural convection in a confined
fluid overlying a porous layer-a comparison study of different models.
Indian Journal of Pure and Applied Mathematics 26: 81-95.
Su, F., Ma, X. & Lan, Z. 2011. The effect of carbon nanotubes
on the physical properties of a binary nanofluid. Journal of
the Taiwan Institute of Chemical Engineers 42(2): 252-257.
Tham, L. & Nazar, R. 2012. Mixed convection flow about
a solid sphere embedded in a porous medium filled with a nanofluid.
Sains Malaysiana 41(12): 1643-1649.
Tiwari, R.K. & Das, M.K. 2007. Heat transfer augmentation
in a two-sided lid-driven differentially heated square cavity utilizing
nanofluids. International Journal of Heat and Mass Transfer 50(9):
2002-2018.
Wang, X.Q. & Mujumdar, A.S. 2007. Heat transfer characteristics
of nanofluids: A review. International Journal of Thermal Sciences
46(1): 1-19.
*Pengarang
untuk surat-menyurat; email: ishak_h@ukm.edu.my
|