Sains Malaysiana 46(5)(2017): 817–824
http://dx.doi.org/10.17576/jsm-2017-4605-16
Numerical
Algorithm of Block Method for General Second Order ODEs using Variable
Step Size
(Algoritma
Berangka Kaedah Blok bagi ODE Umum Peringkat
Kedua Menggunakan Pemboleh Ubah Saiz Langkah)
NAZREEN WAELEH1*
& ZANARIAH ABDUL MAJID2
1Faculty of Electronic
& Computer Engineering, Universiti Teknikal Malaysia Melaka
(UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka Bandaraya Bersejarah,
Malaysia
2Institute for Mathematical
Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
Diserahkan: 26 Januari 2016/Diterima: 1 November 2016
ABSTRACT
This paper outlines an alternative algorithm for solving general
second order ordinary differential equations (ODEs).
Normally, the numerical method was designed for solving higher order
ODEs
by converting it into an n-dimensional first order equations with
implementation of constant step length. Nevertheless, this involved
a lot of computational complexity which led to consumption a lot
of time. Consequently, a direct block multistep method with utilization
of variable step size strategy is proposed. This method was developed
for computing the solution at four points simultaneously and the
derivation based on numerical integration as well as using interpolation
approach. The convergence of the proposed method is justified under
suitable conditions of stability and consistency. Five numerical
examples are considered and some comparisons are made with the existing
methods for demonstrating the validity and reliability of the proposed
algorithm.
Keywords: Block method; general second order ordinary differential
equations; variable step size
ABSTRAK
Kertas ini menggariskan satu algoritma alternatif untuk menyelesaikan
persamaan pembezaan biasa (ODE) umum peringkat kedua. Kebiasaannya,
kaedah berangka untuk menyelesaikan ODE
peringkat tinggi direka dengan menukarkan ia ke dalam n-dimensi
persamaan peringkat pertama dengan perlaksanaan panjang langkah
kekal. Walau bagaimanapun, ini melibatkan kerumitan pengiraan yang
membawa kepada penggunaan masa yang banyak. Oleh yang demikian,
satu kaedah langsung pelbagai langkah blok dengan penggunaan strategi
saiz langkah berubah dicadangkan. Kaedah ini dibangunkan bagi menghitung
penyelesaian pada empat titik secara serentak dan terbitannya berdasarkan
integrasi berangka serta menggunakan pendekatan interpolasi. Penumpuan
kaedah yang dicadangkan dijustifikasi mengikut syarat kestabilan
dan tekal yang sesuai. Terdapat lima contoh berangka dipertimbangkan
dan beberapa perbandingan telah dibuat dengan kaedah yang sedia
ada untuk menunjukkan kesahan dan kebolehpercayaan algoritma yang
dicadangkan.
Kata kunci: Kaedah blok; persamaan pembezaan biasa
umum peringkat kedua; saiz langkah berubah
RUJUKAN
Abdelrahim, R. & Omar, Z. 2016. Direct solution
of second-order ordinary differential equation using a single-step
hybrid block method of order five. Mathematical and Computational
Applications 21(2): 12.
Anakira, N.R., Alomari, A.K. & Hashim, I. 2013.
Numerical scheme for solving singular two-point boundary value problems.
Journal of Applied Mathematics 2013: 1-8.
Cash, J.R. 1983. Block Runge-Kutta methods for
the numerical integration of initial value problems in ordinary
differential equations. Part I. The nonstiff case. Mathematics
of Computation 40(161): 175-191.
Cash, J.R. & Girdlestone, S. 2006. Variable
step Runge-Kutta- Nystršm methods for the numerical solution of
reversible systems. Journal of Numerical Analysis, Industrial
and Applied Mathematics 1(1): 59-80.
Fatunla, S.O. 1991. Block methods for second order
ODEs. International Journal of Computer Mathematics 41(1-2):
55-63.
Hairer, E., Norsett,
S.P. & Wanner, G. 1987. Solving Ordinary Differential Equations
I : Nonstiff Problems. Berlin: Springer- Verlag.
Jator, S.N. 2012. A continuous two-step method of order 8 with
a block extension for yÕÕ= f (x, y, yÕ). Applied Mathematics
and Computation 219(3): 781-791.
Jikantoro, Y.D., Ismail, F. & Senu, N. 2015. Zero-dissipative
trigonometrically fitted hybrid method for numerical solution of
oscillatory problems. Sains Malaysiana 44(3): 473-482.
Kayode, S.J. 2008. An efficient zero-stable numerical method
for fourth-order differential equations. International Journal
of Mathematics and Mathematical Sciences 2008: 1-10.
Lambert, J.D. 1973. Computational Methods in Ordinary Differential
Equations. New York: John Wiley & Sons. Inc.
Majid, Z.A.
& Suleiman, M. 2006. Direct integration implicit variable
steps method for solving higher order systems of ordinary differential
equations directly. Sains Malaysiana 35(2): 63-68.
Majid, Z.A., Azmi, N.A., Suleiman, M.
& Ibrahaim, Z.B. 2012. Solving directly general third order
ordinary differential equations using two-point four step block
method. Sains Malaysiana 41(5): 623-632.
Milne, W.E. 1953. Numerical Solution of Differential Equations.
New York: John Wiley & Sons. Inc.
Omar, Z. & Suleiman, M. 2005. Solving higher order ordinary
differential equations using parallel 2-point explicit block method.
Matematika 21(1): 15-23.
Pandey, P.K. 2014. Rational finite difference approximation
of high order accuracy for nonlinear two point boundary value problems.
Sains Malaysiana 43(7): 1105-1108.
Rosser, J.B. 1967. A Runge-Kutta for all seasons. SIAM Review
9(3): 417-452.
Waeleh, N., Majid, Z.A.,
Ismail, F. & Suleiman, M. 2011a. Numerical solution
of higher order ordinary differential equations by direct
block code. Journal of Mathematics and Statistics 8(1): 77-81.
Waeleh, N., Majid, Z.A. & Ismail, F. 2011b. A new algorithm
for solving higher order IVPs of ODEs. Applied Mathematical Sciences
5(56): 2795-2805.
Yap, L.K. & Ismail, F. 2016. Ninth order block hybrid collocation
method for second order ordinary differential equations. AIP Conference
Proceedings 1705, 020006. doi: http://dx.doi. org/10.1063/1.4940254.
*Pengarang
untuk surat-menyurat; email: nazreen@utem.edu.my
|