Sains Malaysiana 47(1)(2018): 189–193
http://dx.doi.org/10.17576/jsm-2018-4701-22
The Effect of Annealing
to the Hardness of High Y2O3-Oxide Dispersion
Strengthened (ODS) Ferritic Steels
(Kesan Sepuh Lindap terhadap Kekerasan Keluli Ferit ODS-Y2O3 Tinggi)
FARHA MIZANA SHAMSUDIN1*, SHAHIDAN RADIMAN1, YUSOF ABDULLAH2 & NASRI A. HAMID3
1Nuclear
Science Programme, School of Applied Physics, Faculty of Science and
Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Material
Technology Group, Industrial Technology Division, Malaysian Nuclear Agency,
Bangi
43000
Kajang, Selangor Darul Ehsan, Malaysia
3Center
for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Putrajaya
Campus, Jalan Ikram UNITEN, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Diserahkan:
6 Oktober 2016/Diterima: 13 Jun 2017
ABSTRACT
The purpose of this study was to investigate the
effect of annealing to the hardness of high Y2O3-oxide
dispersion strengthened (ODS) ferritic steels. The samples were
prepared by mechanical alloying method followed by Cold Isostatic Pressing (CIP).
After compaction process, the samples were sintered at 1100°C for 1 h in a tube
furnace. The crystal structure and morphology of samples were analyzed by X-ray
Diffraction (XRD) measurement and characterized by using field
emission scanning electron microscope (FESEM), respectively. The
hardness of samples was measured by using a micro-Vickers hardness tester with
a load of 200 gf at annealing temperature of 600°C, 800°C and 1000°C,
respectively. The Vickers hardness value (HV0,2)
versus annealing temperature graph showed that the hardness of all samples
started to decrease at temperature of 600°C due to grain growth. The hardness
value of all samples (1Y and 5Y) identified at this annealing temperature is
855 HV0,2 and 808 HV0, 2, respectively.
Keywords: Electron microscopy; hardness
measurement; mechanical alloying; ODS ferritic steel; XRD measurement
ABSTRAK
Tujuan kajian ini dijalankan adalah untuk
mengkaji kesan sepuh lindap terhadap kekerasan keluli ferit ODS-Y2O3 tinggi.
Sampel bagi kajian ini telah dibangunkan dengan menggunakan kaedah pengaloian
mekanik dan diikuti dengan kaedah Tekan Isostasi Sejuk (CIP).
Selepas proses pemampatan, sampel didedahkan dengan rawatan haba pada suhu
1100°C selama 1 jam di dalam relau pembakaran. Struktur kristal dan morfologi
sampel masing-masing telah dianalisis dengan menggunakan Meter Belauan Sinar-X
(XRD)
dan dicirikan dengan menggunakan mikroskop elektron pengimbas pancaran medan (FESEM).
Kekerasan sampel pula telah diukur dengan menggunakan alat pengukur
mikro-Vickers dengan beban sebanyak 200 gf masing-masing untuk suhu sepuh
lindap pada 600°C, 800°C dan 1000°C. Graf nilai kekerasan Vickers (HV0,2)
melawan suhu sepuh lindap bagi semua sampel telah mendedahkan bahawa kekerasan
bagi semua sampel mula menurun pada suhu 600°C disebabkan oleh fenomena
pembesaran zarah. Nilai kekerasan untuk semua sampel (1Y dan 5Y) yang telah
dikenal pasti pada suhu sepuhlindap ini (600°C) adalah masing-masing sebanyak
855 HV0,2 dan 808 HV0,2.
Kata kunci: Keluli ferit ODS;
mikroskop elektron; pencirian XRD; pengaloian mekanikal;pengukuran
kekerasan
RUJUKAN
Alinger,
M.J., Odette, G.R. & Lucas, G.E. 2002. Tensile and fracture toughness
properties of MA957: Implications to the development of nanocomposited ferritic
alloys. Journal of Nuclear Materials 307-311(Part 1): 484-489.
Boulnat,
X., Fabregue, D., Perez, M., Mathon, M.H. & de Carlan, Y. 2013. High
temperature tensile properties of nano-oxide dispersion strengthened ferritic
steels produced by mechanical alloying and spark plasma sintering. Metallurgical
and Materials Transactions A 44: 2461-2465.
Fischer,
J.J. 1978. Dispersion Strengthened Ferritic Alloy for Use in Liquid-Metal
Fast Breeder Reactors (LMFBRS). US4075010A.
Gelles,
D.S. 1996. Microstructural examination of commercial ferritic alloys at 200
dpa. Journal of Nuclear Materials 233- 237: 293-298.
Hayashi,
T., Sarosi, P.M., Schneibel, J.H. & Mills, M.J. 2008. Creep response and
deformation processes in nanocluster-strengthened ferritic steels. Acta
Materialia 56: 1407-1416.
Hoeltzer,
D.T., Bentley, J., Sokolov, M.A., Miller, M.K., Odette, G.R. & Alinger,
M.J. 2007. Influence of particle dispersions on the high-temperature strength
of ferritic alloys. Journal of Nuclear Materials 367-370(Part A):
166-172.
Kim,
T.K., Noh, S., Kang, S.H., Park, J.J., Jin, H.J., Lee, M.K., Jang, J. &
Rhee, C.K. 2016. Current status and future perspective of advanced radiation
resistant oxide dispersion strengthened steel (ARROS) development for nuclear
reactor system applications. Journal of Nuclear Engineering and Technology 48:
572-594.
Klueh,
R.L., Maziasz, P.J., Kim, I.S., Heatherly, L., Hoelzer, D.T., Hashimoto, N.,
Kenik, E.A. & Miyahara, K. 2002. Tensile and creep properties of an oxide
dispersion-strengthened ferritic steel. Journal of Nuclear Materials 307-311:
773-777.
Li,
Q., Parish, C.M., Powers, K.A. & Miller, M.K. 2014. Helium solubility and
bubble formation in a nanostructured ferritic alloy. Journal of Nuclear
Materials 445: 165-174.
McClintock,
D.A., Sokolov, M.A., Hoelzer, D.T. & Nanstad, R.K. 2009. Mechanical
properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. Journal
of Nuclear Materials 392: 353-359.
Miao,
P., Odette, G.R., Yamamoto, T., Alinger, M. & Klingensmith, D. 2008.
Thermal stability of nano-structured ferritic alloy. Journal of Nuclear
Materials 377: 59-64.
Miller,
M.K. & Zhang, Y. 2011. Fabrication and characterization of APT specimens
from high dose heavy ion irradiated materials. Ultramicroscopy 111:
672-675.
Nuclear
Energy Agency (NEA). 2014. Technology Roadmap Update for Generation IV
Nuclear Energy Systems. Generation IV International Forum (GIF).
Pei,
H. 2013. On the structure-property correlation and the evolution of
nanofeatures in 12-13.5% Cr oxide dispersion strengthened ferritic steels. PhD
Thesis. Karlsruher Institute for Technologies (Unpublished).
Saber,
M., Xu, W., Li, L., Zhu, Y., Koch, C.C. & Scattergood, R.O. 2014. Size
effect of primary Y2O3 additions on the characteristics
of the nanostructured ferritic ODS alloys: Comparing as- milled and
as-milled/annealed alloys using S/TEM. Journal of Nuclear Materials 452:
223-229.
Susila,
P., Sturm, D., Heilmaier, M., Murty, B.S. & Sarma, V.S. 2011. Effect of
yttria particle size on the microstructure and compression creep properties of
nanostructured oxide dispersion strengthened ferritic (Fe-12Cr-2W-0.5Y2O3)
alloy. Journal of Materials Science and Engineering A 528: 4579-4584.
Ukai,
S., Harada, M., Okada, H., Inoue, M., Nomura, S., Shikakura, S., Asabe, K.,
Nishida, T. & Fujiwara, M. 1993. Alloying design of oxide dispersion
strengthened ferritic steel for long life FBRs core materials. Journal of
Nuclear Materials 204: 65-73.
Ukai,
S., Okuda, T., Fujiwara, M., Kobayashi, T., Mizuta, S. & Nakashima, H.
2002. Characterization of high temperature creep properties in recrystallized
12Cr-ODS ferritic steel claddings. Journal of Nuclear Engineering and
Technology 39: 872-879.
Williams,
C.A., Unifantowicz, P., Baluc, N., Smith, G.D.W. & Marquis, E.A. 2013. The
formation and evolution of oxide particles in oxide-dispersion-strengthened
ferritic steels during processing. Acta Materialia 61: 2219-2235.
Zakine,
C., Prioul, C. & Francois, D. 1996. Creep behaviour of ODS steels. Journal
of Materials Science and Engineering A 219(1-2): 102-108.
*Pengarang
untuk surat-menyurat; email: farha90mizana@gmail.com
|