Sains Malaysiana 47(1)(2018): 195–205
http://dx.doi.org/10.17576/jsm-2018-4701-23
Effects
of Nano-Carbon Reinforcement on the Swelling and Shrinkage Behaviour
of Soil
(Kesan
Pengukuhan Nanokarbon terhadap Sifat Pembengkakan dan Pengecutan Tanah)
MOHD RAIHAN TAHA1,2, JAMAL M.A. ALSHAREF1*, RAMEZ A. AL-MANSOB1 & TANVEER AHMED KHAN1
1Department of Civil
and Structural Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Institute
for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
8 Mac 2017/Diterima: 21 Jun 2017
ABSTRACT
In this study, the performance of two types of nanocarbons (NCs),
namely carbon nanotubes (CNTs) and carbon nanofibers (CNFs),
on the three-dimensional shrinkage and swelling properties of three clayey
soils were investigated. The specimens of soil mixed with clay with bentonite
contents of 0, 10 and 20% by weight of dry soil. NC contents
of 0.05, 0.075, 0.10 and 0.20% were chosen to investigate the influence of
different NC types, CNTs and CNFs.
All soil specimens were compacted under maximum dry unit weight and optimum
water content conditions by using standard compaction tests. The physical and mechanical
characteristics of the reinforced samples were then determined. These included
the desiccation cracking area, used to determine the crack intensity factor (CIF),
as well as the shrinkage and swelling. The CIF for
the soil specimens without NCs were higher than the soil
specimens with NC additives. These results show that NCs
decrease the development of desiccation cracks on the surface of compacted
samples. The shrinkage and swelling tests showed that the rate of volume
changing of the compacted soil specimens reduced with the increasing of NCs.
Keywords: Compaction; desiccation cracks; nano-fiber
reinforcement; volume change
ABSTRAK
Dalam kajian ini, prestasi dua jenis nanokarbon (NC),
iaitu tiub nano karbon (CNT) dan serat nano karbon (CNF)
terhadap sifat pengecutan tiga dimensi dan sifat pembengkakan tiga jenis
lempung dikaji. Spesimen tanah dicampur dengan lempung pada kandungan bentonit
0, 10 dan 20% daripada berat tanah kering. Kandungan NC sebanyak
0.05, 0.075, 0.10 dan 0.20% dipilih untuk mengkaji pengaruh jenis NC yang
berbeza iaitu CNT dan CNF. Semua spesimen tanah
dipadatkan di bawah unit berat kering maksimum dan keadaan kandungan air yang
optimum dengan menggunakan ujian pemadatan piawai. Ciri fizikal dan mekanik
sampel tersebut ditentukan. Ini termasuk kawasan retak pengeringan yang
digunakan untuk menentukan faktor keamatan retakan (CIF)
serta pengecutan dan pembengkakan. CIF untuk spesimen tanah tanpa NC adalah
lebih tinggi daripada spesimen tanah dengan bahan tambah NC.
Keputusan ini menunjukkan bahawa NC mengurangkan pembentukan
kesan retak pengeringan pada permukaan sampel yang dipadatkan. Ujian pengecutan
dan pembengkakan menunjukkan bahawa perubahan kadar isi padu pada spesimen
tanah yang dipadatkan dikurangkan dengan peningkatan NC.
Kata kunci: Pemadatan; pengukuhan nano-fiber;
perubahan isi padu; retak pengeringan
RUJUKAN
Al-Mansob, R.A., Ismail, A., Rahmat, R.a.O.,
Borhan, M.N., Alsharef, J.M., Albrka, S.I. & Karim, M.R. 2017.
The performance of epoxidised natural rubber modified asphalt using
nano-alumina as additive. Construction and Building Materials
155: 680-687.
Al-Rub, R.K.A., Tyson, B.M., Yazdanbakhsh, A. &
Grasley, Z. 2011. Mechanical properties of nanocomposite cement
incorporating surface-treated and untreated carbon nanotubes and
carbon nanofibers. Journal of Nanomechanics and Micromechanics
2(1).
Albrecht, B.A. & Benson, C.H. 2001. Effect
of desiccation on compacted natural clays. Journal of Geotechnical
and Geoenvironmental Engineering 127(1): 67-75.
Alsharef, J.M., Taha, M.R., Al-Mansob, R.A.
& Khan, T.A. 2017a. Influence of carbon nanofibers on the shear
strength and comparing cohesion of direct shear test and AFM. Journal
of Nano Research 49: 108-126.
Alsharef, J.M., Taha, M.R. & Khan, T.A.
2017b. Physical dispersion of nanocarbons in composites - A review.
Jurnal Teknologi 79(5): 69-81.
Alsharef, J., Taha, M.R., Firoozi, A.A. & Govindasamy,
P. 2016. Potential of using nanocarbons to stabilize weak soils.
Applied and Environmental Soil Science 2016: Article ID
5060531.
Blandine, F., Habermehi-Cwirzen, K. & Cwirzen,
A. 2016. Contribution of Cnts/Cnfs morphology to reduction of autogenous
shrinkage of Portland cement paste. Frontiers of Structural and
Civil Engineering 10(2): 224-235.
Cai, Y., Shi, B., Ng, C.W.W. & Tang, C.S. 2006. Effect of
polypropylene fibre and lime admixture on engineering properties of clayey
soil. Engineering Geology 87(3-4): 230-240.
Chen, F.H. 1975. Foundations
on Expansive Soils. Volume 12 of Development in Geotechnical Engineering.
New York: Elsevier Scientific Publication Co.
Cui, L. 2013. Incorporation of multiwalled carbon nanotubes
to ordinary Portland cement (OPC): Effects on mechanical properties. Advanced
Materials Research 641-642: 436-439.
Diambra, A., Ibraim, E., Wood, D.M. & Russell, A. 2010.
Fibre reinforced sands: Experiments and modelling. Geotextiles and
Geomembranes 28(3): 238-250.
Etter, B., Tilley, E., Khadka, R. & Udert, K. 2011.
Low-cost struvite production using source-separated urine in Nepal. Water
Research 45(2): 852-862.
Fatahi, B., Khabbaz, H. & Fatahi, B. 2012. Mechanical
characteristics of soft clay treated with fibre and cement. Geosynthetics
International 19(3): 252-262.
Ferkel, H. & Hellmig, R. 1999. Effect of nanopowder
deagglomeration on the densities of nanocrystalline ceramic green bodies and
their sintering behaviour. Nanostructured Materials 11(5): 617-622.
Firoozi, A.A., Taha, M.R., Firoozi, A.A. & Khan, T.A. 2015.
Effect of ultrasonic treatment on clay microfabric evaluation by
atomic force microscopy. Measurement 66: 244-252.
Govindasamy, P., Taha, M.R., Alsharef, J. & Ramalingam,
K. 2017. Influence of nanolime and curing period on unconfined compressive
strength of soil. Applied and Environmental Soil Science
2017: Article ID 8307493.
Harianto, T., Hayashi, S., Du, Y.J. & Suetsugu, D. 2008.
Effects of fiber additives on the desiccation crack behavior of the compacted
akaboku soil as a material for landfill cover barrier. Water, Air, and Soil
Pollution 194(1-4): 141-149.
Hataf, N. & Rahimi, M. 2006. Experimental investigation
of bearing capacity of sand reinforced with randomly distributed tire shreds. Construction
and Building Materials 20(10): 910-916.
Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M. & Zadhoush,
A. 2012. A simple review of soil reinforcement by using natural and synthetic
fibers. Construction and Building Materials 30: 100-116.
Houston, S.L., Dye, H.B., Zapata, C.E., Walsh, K.D. &
Houston, W.N. 2009. Study of expansive soils and residential foundations on
expansive soils in Arizona. Journal of Performance of Constructed Facilities 25(1): 31-44.
Ige, O.O. 2009. Assessment of geotechnical properties of
migmatite-derived residual soil from Ilorin, Southwestern Nigeria, as barrier
in sanitary landfill. Continental Journal of Earth Sciences 4: 23-33.
Kleppe, J.H. & Olson, R.E. 1985. Desiccation cracking of
soil barriers. In Hydraulic Barriers in Soil and Rock: A Symposium edited
by Johnson, A.I., ASTM Committee D-18 on Soil and Rock (USA); United States
Committee on Large Dams. Italy: ASTM International.
Kumar, A., Walia, B.S. & Mohan, J. 2006. Compressive
strength of fiber reinforced highly compressible clay. Construction and
Building Materials 20(10): 1063-1068.
Lee, J., Kim, M., Hong, C.K. & Shim, S.E. 2007.
Measurement of the dispersion stability of pristine and surface-modified
multiwalled carbon nanotubes in various nonpolar and polar solvents. Measurement
Science and Technology 18(12): 3707-3712.
Leroueil, S. & Hight, D. 2015. Compacted soils: From
physics to hydraulic and mechanical behaviour. Proceedings of the 1st
Pan-American Conference on Unsaturated Soils (PanAmUNSAT’13). hlm. 41-59.
Li, G.Y., Wang, P.M. & Zhao, X. 2007. Pressure-sensitive
properties and microstructure of carbon nanotube reinforced cement composites. Cement
and Concrete Composites 29(5): 377-382.
Mangat, P., Motamedi-Azari, M. & Ramat, B.S. 1984. Steel
fibre-cement matrix interfacial bond characteristics under flexure. International
Journal of Cement Composites and Lightweight Concrete 6(1): 29-37.
Michalowski, R.L. & C̆Ermák, J. 2002. Strength
anisotropy of fiber-reinforced sand. Computers and Geotechnics 29(4):
279-299.
Mirzababaei, M., Miraftab, M., Mohamed, M. & Mcmahon, P.
2013. Impact of carpet waste fibre addition on swelling properties of compacted
clays. Geotechnical and Geological Engineering 31(1): 173-182.
Moore, V.C., Strano, M.S., Haroz, E.H., Hauge, R.H.,
Smalley, R.E., Schmidt, J. & Talmon, Y. 2003. Individually suspended
single-walled carbon nanotubes in various surfactants. Nano Letters 3(10):
1379-1382.
Nahlawi, H. & Kodikara, J. 2006. Laboratory experiments
on desiccation cracking of thin soil layers. Geotechnical & Geological
Engineering 24(6): 1641-1664.
Nochaiya, T. & Chaipanich, A. 2011. Behavior of
multi-walled carbon nanotubes on the porosity and microstructure of
cement-based materials. Applied Surface Science 257(6): 1941-1945.
Omidi, G., Prasad, T., Thomas, J. & Brown, K. 1996a. The
Influence of amendments on the volumetric shrinkage and integrity of compacted
clay soils used in landfill liners. Water, Air, and Soil Pollution 86(1-4):
263-274.
Omidi, G., Thomas, J. & Brown, K. 1996b. Effect of
desiccation cracking on the hydraulic conductivity of a compacted clay liner. Water,
Air, and Soil Pollution 89(1-2): 91-103.
Park, T. & Tan, S.A. 2005. Enhanced performance of
reinforced soil walls by the inclusion of short fiber. Geotextiles and
Geomembranes 23(4): 348-361.
Peng, X., Horn, R., Peth, S. & Smucker, A. 2006.
Quantification of soil shrinkage in 2D by digital image processing of soil
surface. Soil and Tillage Research 91(1): 173-180.
Plé, O. & Lê, T. 2012. Effect of polypropylene
fiber-reinforcement on the mechanical behavior of silty clay. Geotextiles
and Geomembranes 32: 111-116.
Saran, S. 2010. Reinforced Soil and Its Engineering
Applications. IK International Pvt Ltd.
Siddique, R. & Mehta, A. 2014. Effect of carbon nanotubes
on properties of cement mortars. Construction and Building Materials
50: 116-129.
Taha, M.R. & Alsharef, J.M.A. 2017. Use of nanocarbons
to control wwelling, shrinkage, and hydraulic conductivity of a
residual soil. Proceedings of the 2nd Symposium on Coupled Phenomena
in Environmental Geotechnics (CPEG2), Leeds, UK 2017.
Taha, M.R., Ismail, E., Chik, Z., De Miguel, Y., Porro, A.
& Bartos, P. 2005. Some nano aspects and concepts in geotechnology. 2nd
Int. Symp. on Nanotechnology in Construction, Bilbao, Spain. hlm. 373-381.
Tang, C., Shi, B., Gao, W., Chen, F. & Cai, Y. 2007.
Strength and mechanical behavior of short polypropylene fiber reinforced and
cement stabilized clayey soil. Geotextiles and Geomembranes 25(3):
194-202.
Tyson, B.M., Abu Al-Rub, R.K., Yazdanbakhsh, A. &
Grasley, Z. 2011. Carbon nanotubes and carbon nanofibers for enhancing the
mechanical properties of nanocomposite cementitious materials. Journal of
Materials in Civil Engineering 23(7): 1028-1035.
Vaisman, L., Marom, G. & Wagner,
H.D. 2006. Dispersions of surface-modified carbon nanotubes in water-soluble
and water-insoluble polymers. Advanced Functional Materials 16(3):
357-363.
Wang, C., Li, K.Z., Li, H.J., Jiao, G.S., Lu, J. & Hou,
D.S. 2008. Effect of carbon fiber dispersion on the mechanical properties of
carbon fiber-reinforced cement-based composites. Materials Science and
Engineering: A 487(1): 52-57.
Witt,
K. & Zeh, R. 2005. Cracks due to desiccation in cover lining systems
phenomena and design strategy. International Workshop LIRIGM, Grenoble
University, France.
Yazdanbakhsh,
A., Grasley, Z., Tyson, B. & Abu Al-Rub, R. 2010. Distribution of carbon
nanofibers and nanotubes in cementitious composites. Transportation Research
Record: Journal of the Transportation Research Board 2142: 89-95.
Yazdanbakhsh,
A., Grasley, Z., Tyson, B. & Al-Rub, R.A. 2009. Carbon nano filaments in
cementitious materials: Some issues on dispersion and interfacial bond. ACI
Special Publication 267: 21-34.
Yetimoglu,
T., Inanir, M. & Esatinanir, O. 2005. A study on bearing capacity of
randomly distributed fiber-reinforced sand fills overlying soft clay. Geotextiles
and Geomembranes 23(2): 174-183.
*Pengarang
untuk surat-menyurat; email: jamalshref@yahoo.com
|