Sains Malaysiana 47(1)(2018): 27–34
http://dx.doi.org/10.17576/jsm-2018-4701-04
Biotechnology:
A Powerful Tool for the Removal of Cadmium from Aquatic Systems
(Bioteknologi:
Alat yang Ampuh untuk Penyingkiran Kadmium daripada Sistem Akuatik)
RABEEA MUNAWAR1, EHSAN ULLAH MUGHAL1*, AMINA SADIQ2, HAMID MUKHTAR3, MUHAMMAD NAVEED ZAFAR4, MUHAMMAD WASEEM MUMTAZ1, ISHTIAQ AHMED5, MUHAMMAD ZUBAIR1, BILAL AHMAD KHAN6, JAMSHAID ASHRAF1, ZOFISHAN YOUSAF1 & NOREED AKBAR1
1Department of
Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
2Department of
Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
3Institute of
Industrial Biotechnology, GC University, Lahore 54000, Pakistan
4Department of
Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
5Karlsruhe
Institute of Technology (KIT), Institute for Biological
Interfaces (IBG-1), Hermann-von-Helmholtz-Platz, D-76344
Eggenstein-Leopoldshafen, Germany
6Department
of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
Diserahkan: 16 Februari 2017/Diterima: 15 Jun 2017
ABSTRACT
The prime objective of the present research work was to evaluate
the efficiency of bio-machine for the removal of Cadmium (Cd) from aquatic
systems. Aspergillus niger fungus
was used as bio-machine to remove Cd from aquatic systems. Twenty three
different strains (IIB-1 to IIB-23) were isolated from industrial effluents and
the Langmuir and Freundlich models were applied to the best Cadmium removal
strain IIB-23 in order to obtain the adsorption parameters. Different
parameters such as pH, temperature, contact time, initial metal concentratio,
and biomass dosage on the biosorption of Cd were studied. The percent removal
of Cd initially increased with an increase in pH ranging from 5.5-6.5 and then
decreased by increasing pH from 7.0-7.5. An optimized pH used for Cd removal
from aquatic systems was found to be 6.5. Additionally, an optimum amount of
biomass was 1.33 g for the maximum removal of Cd from the aqueous solutions
with initial metal concentration of 75 mg/L. The results obtained thus
indicated that Langmuir model is the best suited for the removal of Cd from
aquatic systems.
Keywords: Adsorption; Aspergillus niger; Bio-machine; Biosorption; Biotechnology;
Cadmium
ABSTRAK
Objektif utama penyelidikan ini adalah untuk menilai keberkesanan
mesin biologi dalam menyingkirkan kadmium (Cd) daripada sistem akuatik.
Kulat Aspergillus niger digunakan sebagai mesin biologi
untuk penyingkiran Cd daripada sistem akuatik. Dua puluh tiga strain
berbeza (IIB-1 IIB-23) telah dipencilkan daripada efluen industri
dan model Langmuir dan Freundlich digunakan untuk penyingkiran kadmium
terbaik strain IIB-23 untuk mendapatkan parameter penjerapan. Parameter
berbeza seperti pH, suhu, masa hubungan, kepekatan logam pemula
dan dos biojisim pada bioserapan CD telah dikaji. Peratus penyingkiran
Cd pada mulanya meningkat dengan peningkatan dalam pH antara 5.5-6.5
dan kemudian menurun dengan peningkatan pH daripada 7.0-7.5. PH
optimum yang digunakan untuk penyingkiran Cd daripada sistem akuatik
adalah 6.5. Di samping itu, sejumlah biojisim optimum adalah 1.33
g untuk penyingkiran maksimum Cd daripada larutan berair dengan
kepekatan logam pemula 75 mg/L. Keputusan yang diperoleh menunjukkan
bahawa model Langmuir adalah yang terbaik untuk penyingkiran Cd
daripada sistem akuatik.
Kata kunci: Aspergillus
niger; bioserapan; bioteknologi; kadmium; mesin biologi; penjerapan
RUJUKAN
Ahluwalia, S.S. & Goyal, D. 2007. Microbial
and plant derived biomass for removal of heavy metals from wastewater. Bioresource
Technology 98: 2243-2257.
Aksu, Z., Egretli, G. & Kutsal, T. 1999. A
comparative study for the biosorption characteristics of chromium (VI) on
ca-alginate, agarose and immobilized c vulgaris in a continuous packed bed
column. Journal of Environmental Science & Health Part A 34:
295-316.
Borcherding, N. 2014. Noncanonical Wnt signaling
in breast cancer initiation and progression. Thesis. University of Iowa
(Unpublished).
Bardy, G.H., Lee, K.L., Mark, D.B., Poole, J.E.,
Packer, D.L., Boineau, R., Domanski, M., Troutman, C., Anderson, J. &
Johnson, G. 2005. Amiodarone or an implantable cardioverter-defibrillator for
congestive heart failure. New England Journal of Medicine 352: 225-237.
Chopra, A. &
Pathak, C. 2010. Biosorption technology for removal of metallic pollutants-an
overview. Journal of Applied & Natural Science 2: 318-329.
Colditz, G.A., Hankinson, S.E., Hunter, D.J., Willett, W.C.,
Manson, J.E., Stampfer, M.J., Hennekens, C., Rosner, B. & Speizer, F.E.
1995. The use of estrogens and progestins and the risk of breast cancer in
postmenopausal women. New England Journal of Medicine 332: 1589-1593.
Doyle, R.G. 1963. The consolidation characteristics of peat
as determined from the one-dimensional consolidation test. Thesis. University
of British Columbia (Unpublished).
Finley, R.L., Collignon, P., Larsson, D.J., McEwen, S.A.,
Li, X.Z., Gaze, W.H., Reid-Smith, R., Timinouni, M., Graham, D.W. & Topp,
E. 2013. The scourge of antibiotic resistance: The important role of the
environment. Clinical Infectious Diseases 57: 704-710.
Göksungur, Y., Üren, S. & Güvenç, U. 2005. Biosorption
of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresource
Technology 96: 103-109.
Goyal, N., Jain, S. & Banerjee, U. 2003. Comparative
studies on the microbial adsorption of heavy metals. Advances in
Environmental Research 7: 311-319.
Joo, J.H., Hassan, S.H. & Oh, S.E. 2010. Comparative
study of biosorption of Zn 2+ by Pseudomonas aeruginosa and Bacillus
cereus. International Biodeterioration & Biodegradation 64:
734-741.
Kobya, M., Demirbas, E., Senturk, E. & Ince, M. 2005.
Adsorption of heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone. Bioresource Technology 96: 1518-1521.
Moses, J.W., Leon, M.B., Popma, J.J., Fitzgerald, P.J.,
Holmes, D.R., O’Shaughnessy, C., Caputo, R.P., Kereiakes, D.J., Williams, D.O.
& Teirstein, P.S. 2003. Sirolimus-eluting stents versus standard stents in
patients with stenosis in a native coronary artery. New England Journal of
Medicine 349: 1315-1323.
Martín-González, A., Díaz, S., Borniquel, S., Gallego, A.
& Gutiérrez, J.C. 2006. Cytotoxicity and bioaccumulation of heavy metals by
ciliated protozoa isolated from urban wastewater treatment plants. Research
in Microbiology 157: 108-118.
Nagajyoti, P., Lee, K. & Sreekanth, T. 2010. Heavy
metals, occurrence and toxicity for plants: A review. Environmental
Chemistry Letters 8: 199-216.
Newman, A.B., Walter, S., Lunetta, K.L., Garcia, M.E.,
Slagboom, P.E., Christensen, K., Arnold, A.M., Aspelund, T., Aulchenko, Y.S.
& Benjamin, E.J. 2010. A meta-analysis of four genome-wide association
studies of survival to age 90 years or older: The cohorts for heart and aging
research in genomic epidemiology consortium. The Journals of Gerontology
Series A: Biological Sciences and Medical Sciences 65: 478-487.
Ng, A.K.L., Zhang, H., Tan, K., Li, Z., Liu, J.H., Chan,
P.K.S., Li, S.M., Chan, W.Y., Au, S.W.N., Joachimiak, A., Walz, T., Wang, J.H.
& Shaw, P.C. 2008. Structure of the influenza virus A H5N1 nucleoprotein:
Implications for RNA binding, oligomerization, and vaccine design. The FASEB
Journal 22(10): 3638-3647.
Nourbakhsh, M., Sag, Y., Özer, D., Aksu, Z., Kutsal, T. &
Caglar, A. 1994. A comparative study of various biosorbents for removal of
chromium (VI) ions from industrial waste waters. Process Biochemistry 28:
1-5.
Park, J.K., Jin, Y.B. & Chang, H.N. 1999. Reusable
biosorbents in capsules from Zoogloea ramigera cells for cadmium removal. Biotechnology
and Bioengineering 63: 116-121.
Pittman, J.K., Dean, A.P. & Osundeko, O. 2011. The
potential of sustainable algal biofuel production using wastewater resources. Bioresource
Technology 102: 17-25.
Robbins, C.R. 2012. Chemical composition of different hair
types. In Chemical and Physical Behavior of Human Hair. New York:
Springer. pp. 105-176.
Sawalha, M.F., Peralta-Videa, J.R., Romero-González, J.
& Gardea-Torresdey, J.L. 2006. Biosorption of Cd (II), Cr (III), and Cr
(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm
studies. Journal of Colloid and Interface Science 300: 100-104.
Villaescusa, I., Fiol, N., Poch, J., Bianchi, A. &
Bazzicalupi, C. 2011. Mechanism of removal by vegetable wastes: The
contribution of π-π interactions, hydrogen bonding and hydrophobic effect. Desalination 270: 135-142.
Volesky, B. & May-Phillips, H. 1995. Biosorption of
heavy metals by Saccharomyces cerevisiae. Applied Microbiology and
Biotechnology 42: 797-806.
Wilhelmi, B. & Duncan, J. 1995. Metal recovery from Saccharomyces
cerevisiae biosorption columns. Biotechnology Letters 17: 1007-1012.
Xiangliang, P., Jianlong, W. & Daoyong, Z. 2005.
Biosorption of Pb (II) by Pleurotus ostreatus immobilized in calcium alginate
gel. Process Biochemistry 40: 2799-2803.
Yin, P., Yu, Q., Jin, B. & Ling, Z. 1999. Biosorption
removal of cadmium from aqueous solution by using pretreated fungal biomass
cultured from starch wastewater. Water Research 33: 1960-1963.
Zhou, J.L. & Kiff, R.J. 1991. The uptake of copper from
aqueous solution by immobilized fungal biomass. Journal of Chemical
Technology and Biotechnology 52: 317-330.
*Pengarang
untuk surat-menyurat; email: ehsan.ullah@uog.edu.pk
|