Sains Malaysiana 47(1)(2018): 35–49
http://dx.doi.org/10.17576/jsm-2018-4701-05
Removal
of Heavy Metals from Wastewater using Date Palm as a Biosorbent: A Comparative
Review
(Penyingkiran
Logam Berat dari Air Kumbahan menggunakan Kurma sebagai Satu Bahan
Bioserap: Satu Kajian Perbandingan)
M. SHAFIQ1, A.A. ALAZBA1,2 & M.T. AMIN1,3*
1Alamoudi
Water Research Chair, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom
of Saudi Arabia
2Agricultural
Engineering Department, King Saud University, P.O. Box 2460, Riyadh 11451, Kingdom
of Saudi Arabia
3Departmzent
of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad,
22060, Pakistan
Diserahkan:
12 Mac 2017/Diterima: 26 Jun 2017
ABSTRACT
The drawbacks associated with activated carbon, mainly cost, have
resulted in the continuing search for inexpensive adsorbents easily and
abundantly available as waste materials. The current review presents the
results of using different forms of date palm (DP)
waste as low-cost biosorbents, highlighting effects of contact time, pH, the
dose and size of the adsorbent particles, initial metal concentrations and the
effects of pre-treatment on the adsorption efficiency of copper (Cu2+).
The results of studies using the raw DP trunk fiber suggested the
equilibrium time was approximately 2 h, with a significantly high removal of Cu2+ during
the initial 1 h at acidic pH values of 5-6, which indicated the interference of
H+ ions with metal ions at low pH
values. The raw DP trunk fiber was tested with initial
particle sizes of 75-251 μm and adsorbent dosages in the range of 0.4-5.0
g L-1. The best adsorption efficiency was obtained at
the smallest particle size and the maximum dosage. The use of different initial
Cu2+ concentrations resulted in a
10% decrease in removal, but the adsorption capacity was increased three-fold
with an initial concentration of 20-100 mg L-1.
A significantly higher removal efficiency of Cu2+ was
achieved using the modified DP waste than with the raw
trunk fiber for all experimental parameters and operational conditions owing to
the increased functional groups on the modified adsorbents. The reviewed
literature confirmed the efficiency of DP waste for the adsorption of
heavy metals, but the use of the raw or even modified DP waste
for the large-scale treatment of wastewater is still a concern owing to the
cost effectiveness, availability and requirement for DP waste
on a massive scale. Further research for physical modifications of the raw DP waste
that employs cost-effective techniques, such as using the DP waste
in the form of dehydrated carbon and media filters are required.
Keywords: Adsorption; date palm waste; heavy metal; large-scale;
wastewater treatment
ABSTRAK
Kelemahan yang dikaitkan dengan karbon, terutamanya kos, telah mengakibatkan
pencarian berterusan untuk bahan cerap murah sedia ada dengan banyak
sebagai bahan buangan. Kajian ini membentangkan keputusan daripada
penggunaan sisa buangan kurma (DP) dalam bentuk yang berbeza
sebagai bahan cerap berkos rendah, menonjolkan kesan hubungan masa,
pH, dos dan saiz zarah bahan cerap, kepekatan logam pemula dan kesan
pra rawatan ke atas kecekapan penjerapan tembaga (Cu2+). Keputusan kajian menggunakan
serabut batang DP mentah mencadangkan masa keseimbangan
adalah kira-kira 2 jam dengan penyingkiran tinggi Cu2+
semasa 1 jam pemula pada nilai asid pH 5-6, yang menunjukkan
gangguan ion H+
dengan logam ion pada nilai pH rendah. Serabut batang
DP mentah
diuji dengan saiz zarah pemula daripada 75-251 μm dan dos bahan
cerap dalam lingkungan 0.4-5.0 g L-1. Kecekapan penjerapan
terbaik telah diperoleh pada saiz zarah terkecil dan dos maksimum.
Penggunaan pemula Cu2+ berbeza kepekatan mengakibatkan
pengurangan 10% penyingkiran, tetapi keupayaan penjerapan meningkat
tiga kali ganda dengan kepekatan pemula 20-100 mg L-1.
Kecekapan penyingkiran yang jauh lebih tinggi daripada Cu2+
telah dicapai menggunakan sisa DP terubahsuai berbanding dengan serabut
batang mentah untuk semua parameter kajian dan operasi keadaan disebabkan
peningkatan kumpulan fungsian pada bahan cerap terubahsuai. Kajian
kepustakaan mengesahkan kecekapan sisa kumbahan DP bagi
penjerapan logam berat, tetapi penggunaan sisa rawatan mentah atau
DP
terubahsuai untuk rawatan pada skala besar masih menjadi
kebimbangan kepada keberkesanan kos, ketersediaan dan keperluan
bagi sisa kumbahan DP pada
skala besar-besaran. Kajian lanjutan bagi pengubahsuaian fizikal
sisa kumbahan DP
yang menggunakan teknik keberkesanan kos seperti menggunakan
sisa kumbahan DP
dalam bentuk penapis dehidrasi karbon dan media adalah
diperlukan.
Kata kunci: Logam berat; penjerapan; rawatan sisa
air; sisa kurma; skala besar
RUJUKAN
Abia, A.A., Horsfall, M.J. & Didi, O. 2004.
Studies on the use of agricultural by-product for the removal of trace metals
from aqueous solutions. Journal of Applied Sciences and Environmental
Management 6(2): 89-95.
Ahmad, F., Daud, W.M.A.W., Ahmad, M.A. &
Radzi, R. 2012. Cocoa (Theobroma cacao) shell-based activated carbon by
CO2 activation in removing of cationic dye from aqueous solution: Kinetics and
equilibrium studies. Chemical Engineering Research and Design 90(10):
1480-1490.
Ahmady-Asbchin, S., Andres, Y., Gerente, C.
& Le Cloirec, P. 2009. Natural seaweed waste as sorbent for heavy metal
removal from solution. Environmental Technology 30(7): 755-762.
Ahmaruzzaman, M. 2011. Industrial wastes as
low-cost potential adsorbents for the treatment of wastewater laden with heavy
metals. Advances in Colloid and Interface Science 166(1-2): 36-59.
Ajmal, M., Rao, R.A.K., Ahmad, R. & Ahmad,
J. 2000. Adsorption studies on Citrus reticulata (fruit peel of orange):
removal and recovery of Ni(II) from electroplating wastewater. Journal of
Hazardous Materials 79(1-2): 117-131.
Akunwa, N.K., Muhammad, M.N. & Akunna, J.C.
2014. Treatment of metal-contaminated wastewater: A comparison of low-cost
biosorbents. Journal of Environmental Management 146: 517-523.
Al-Ghamdi, A., Altaher, H. & Omar, W. 2013.
Application of date palm trunk fibers as adsorbents for removal of Cd +2 ions
from aqueous solutions. Journal of Water Reuse and Desalination 3(1):
47-54.
Al-Ghouti, M.A., Li, J., Salamh, Y., Al-Laqtah,
N., Walker, G. & Ahmad, M.N.M. 2010. Adsorption mechanisms of removing
heavy metals and dyes from aqueous solution using date pits solid adsorbent. Journal
of Hazardous Materials 176(1-3): 510-520.
Al-Haidary, A.M.A., Zanganah, F.H.H., Al-Azawi,
S.R.F., Khalili, F.I. & Al-Dujaili, A.H. 2011. A study on using date palm
fibers and leaf base of palm as adsorbents for Pb(II) ions from its aqueous
solution. Water, Air, & Soil Pollution 214(1-4): 73-82.
Al-Homaidan, A.A., Al-Houri, H.J., Al-Hazzani,
A.A., Elgaaly, G. & Moubayed, N.M.S. 2014. Biosorption of copper ions from
aqueous solutions by Spirulina platensis biomass. Arabian Journal of
Chemistry 7(1): 57-62.
Ali, I. 2010a. The quest for active carbon
adsorbent substitutes: Inexpensive adsorbents for toxic metal ions removal from
wastewater. Separation & Purification Reviews 39(3-4): 95-171.
Ali, I., Al-Othman, Z.A., Alwarthan, A., Asim,
M. & Khan, T.A. 2013. Removal of arsenic species from water by batch and
column operations on bagasse fly ash. Environmental Science and Pollution
Research 21(5): 3218-3229.
Al-Kaabi, K., Al-Khanbashi, A. & Hammami, A.
2005. Date palm fibers as polymeric matrix reinforcement: DPF/polyester
composite properties. Polymer Composites 26(5): 604-613.
Al‐Rub, F.A.A. 2006. Biosorption of zinc on palm
tree leaves: Equilibrium, kinetics, and thermodynamics studies. Separation
Science and Technology 41(15): 3499-3515.
Al-Saidi, H.M. 2013. The fast recovery of
gold(III) ions from aqueous solutions using raw date pits: Kinetic,
thermodynamic and equilibrium studies. Journal of Saudi Chemical Society 20(6):
615-624.
Alshabanat, M., Alsenani, G. & Almufarij, R.
2013. Removal of crystal violet dye from aqueous solutions onto date palm fiber
by adsorption technique. Journal of Chemistry 2013: e210239.
Amin, M.T., Alazba, A.A. & Shafiq, M. 2016.
Adsorption of copper (Cu2+) from aqueous solution
using date palm trunk fibre: Isotherms and kinetics. Desalination and Water
Treatment 57(47): 22454-22466.
Amin, M.T., Alazba, A.A. & Shafiq, M. 2015.
Adsorptive removal of reactive black 5 from wastewater using Bentonite clay:
Isotherms, kinetics and thermodynamics. Sustainability 7(11):
15302-15318.
Amuda, O., Amoo, I. & Ajayi, O. 2006.
Performance optimization of coagulant/flocculant in the treatment of wastewater
from a beverage industry. Journal of Hazardous Materials 129(1- 3):
69-72.
Areco, M.M. & Dos Santos Afonso, M. 2010. Copper, zinc,
cadmium and lead biosorption by Gymnogongrus torulosus: Thermodynamics
and kinetics studies. Colloids and Surfaces B: Biointerfaces 81(2):
620-628.
Ayd?n, H., Bulut, Y. & Yerlikaya, Ç. 2008. Removal of copper
(II) from aqueous solution by adsorption onto low-cost adsorbents. Journal
of Environmental Management 87(1): 37-45.
Balasubramanian, N., Kojima, T., Basha, C.A. & Srinivasakannan,
C. 2009. Removal of arsenic from aqueous solution using electrocoagulation. Journal
of Hazardous Materials 167(1- 3): 966-969.
Banerjee, S.S., Jayaram, R.V. & Joshi, M.V. 2003. Removal of
nickel(II) and zinc(II) from wastewater using fly ash and impregnated fly ash. Separation
Science and Technology 38(5): 1015-1032.
Baral, S.S., Das, S.N., Rath, P. & Chaudhury, G.R. 2007.
Chromium(VI) removal by calcined bauxite. Biochemical Engineering Journal 34(1):
69-75.
Barreveld, W.H. 1993. Date palm products, FAO Agricultural
Services Bulletin No. 101, Food and Agriculture Organization of the United
Nations, Italy, Rome (http://www.fao.org/ docrep/t0681e/t0681e00.htm).
Belala, Z., Jeguirim, M., Belhachemi, M., Addoun, F. & Trouvé,
G. 2011. Biosorption of copper from aqueous solutions by date stones and
palm-trees waste. Environmental Chemistry Letters 9(1): 65-69.
Bhattacharya, A.K., Mandal, S.N. & Das, S.K. 2006. Adsorption
of Zn(II) from aqueous solution by using different adsorbents. Chemical
Engineering Journal 123(1-2): 43-51.
Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir, A.A.,
Pervez, A., Haroon, H. & Mahmood, Q. 2013. Waste biomass adsorbents for
copper removal from industrial wastewater - A review. Journal of Hazardous
Materials 263: 322-333.
Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K.
& Matis, K.A. 2003. Hybrid flotation-membrane filtration process for the
removal of heavy metal ions from wastewater. Water Research 37(16):
4018-4026.
Boudrahem, F., Aissani-Benissad, F. & Soualah, A. 2011.
Adsorption of Lead(II) from aqueous solution by using leaves of date trees as
an adsorbent. Journal of Chemical & Engineering Data 56(5):
1804-1812.
Bouhamed, F., Elouear, Z. & Bouzid, J. 2012. Adsorptive
removal of copper(II) from aqueous solutions on activated carbon prepared from
Tunisian date stones: Equilibrium, kinetics and thermodynamics. Journal of
the Taiwan Institute of Chemical Engineers 43(5): 741-749.
Brusick, D. 1993. Genotoxicity of phenolic antioxidants. Toxicology
and Industrial Health 9(1-2): 223-230.
Bsoul, A.A., Zeatoun, L., Abdelhay, A. & Chiha, M. 2014.
Adsorption of copper ions from water by different types of natural seed
materials. Desalination and Water Treatment 52(31-33): 5876-5882.
Bulut, Y. & Tez, Z. 2007. Adsorption studies on ground shells
of hazelnut and almond. Journal of Hazardous Materials 149(1): 35-41.
Chaouch, N., Ouahrani, M. & Laouini, S. 2014. Adsorption of
Lead (II) from aqueous solutions onto activated carbon prepared from Algerian
dates stones of Phoenix dactylifera. L (Ghars variety) by H3PO4
activation. Oriental Journal of Chemistry 30(3): 1317-1322.
Chaouch, N., Ouahrani, M.R., Chaouch, S. & Gherraf, N. 2013.
Adsorption of cadmium (II) from aqueous solutions by activated carbon
produced from Algerian dates stones of Phoenix dactylifera by H3PO4
activation. Desalination and Water Treatment 51(10-12):
2087-2092.
Chatterjee, A., Widick, P., Sternschein, R., Smith, W.B. & Bromberger,
B. 2010. The assessment of art attributes. Empirical Studies
of the Arts 28(2): 207-222.
Chieng, H.I., Lim, L.B.L. & Priyantha, N. 2015. Enhancing adsorption
capacity of toxic malachite green dye through chemically modified
breadnut peel: Equilibrium, thermodynamics, kinetics and regeneration
studies. Environmental Technology 36(1): 86-97.
Da̧browski, A., Hubicki, Z., Podkościelny, P. & Robens,
E. 2004. Selective removal of the heavy metal ions from waters and
industrial wastewaters by ion-exchange method. Chemosphere
56(2): 91-106.
Demirbas, A. 2008. Heavy metal adsorption onto agro-based waste materials:
A review. Journal of Hazardous Materials 157(2): 220-229.
Dich, J., Zahm, S.H., Hanberg, A. & Adami, H.O. 1997. Pesticides
and cancer. Cancer Causes & Control 8(3): 420-443.
Ebrahimi, R., Maleki, A., Shahmoradi, B., Daraei, H., Mahvi, A.H.,
Barati, A.H. & Eslami, A. 2013. Elimination of arsenic contamination
from water using chemically modified wheat straw. Desalination
and Water Treatment 51(10-12): 2306- 2316.
El Nemr, A., Khaled, A., Abdelwahab, O. & El-Sikaily, A. 2008.
Treatment of wastewater containing toxic chromium using new activated
carbon developed from date palm seed. Journal of Hazardous Materials
152(1): 263-275.
El-Bindary, A.A., Hussien, M.A., Diab, M.A. & Eessa, A.M. 2014.
Adsorption of acid yellow 99 by polyacrylonitrile/ activated carbon
composite: Kinetics, thermodynamics and isotherm studies. Journal
of Molecular Liquids 197: 236-242.
El-Juhany, L.I. 2010. Degradation of date palm trees and date production
in Arab countries: Causes and potential rehabilitation. Australian
Journal of Basic and Applied Sciences 4(8): 3998-4010.
Ghorbani, F., Sanati, A.M., Younesi, H. & Ghoreyshi, A.A. 2012.
The potential of date palm leaf ash as low cost adsorbent for the
removal of PB(II) ion from aqueous solution. International Journal
of Engineering - Transactions B: Applications 25(4): 278-296.
Gupta, V.K., Ali, I., Saleh, T.A., Nayak, A. & Agarwal, S. 2012.
Chemical treatment technologies for waste-water recycling - An overview.
RSC Advances 2(16): 6380-6388.
Gupta, V.K., Ali, I., Saleh, T.A., Siddiqui, M.N. & Agarwal,
S. 2013. Chromium removal from water by activated carbon developed
from waste rubber tires. Environmental Science and Pollution
Research 20(3): 1261-1268.
Haleem, A.M. & Abdulgafoor, E.A. 2010. The biosorption of Cr
(VI) from aqueous solution using date palm fibers (Leef). Al-Khwarizmi
Engineering Journal 6(4): 31-36.
Hall, D.W., Sandrin, J.A. & McBride, R.E. 1990. An overview of
solvent extraction treatment technologies. Environmental Progress
9(2): 98-105.
Hamouche, A., Zine, B.M. & Krim, L. 2015. Kinetics and thermodynamics
of Cr ions sorption on mixed sorbents prepared from olive stone
and date pit from aqueous solution. International Journal of
Food and Biosystem Engineering 1(1): 1-8.
He, J. & Chen, J.P. 2014. A comprehensive review
on biosorption of heavy metals by algal biomass: Materials, performances,
chemistry, and modeling simulation tools. Bioresource Technology
160: 67-78.
Hikmat, N.A., Qassim,
B.B. & Khethi, M.T. 2014. Thermodynamic and kinetic studies of lead
adsorption from aquesous solution onto petiole and fiber of palm tree. American
Journal of Chemistry 4(4): 116-124.
Hilal, N.M., Ahmed, I.A. & El-Sayed, R.E. 2012. Activated
and non-activated date pits adsorbents for the removal of copper(II) and
cadmium(II) from aqueous solutions. ISRN Physical Chemistry 2012: 1-11.
Ho, Y.S., Porter, J.F. & McKay, G. 2002. Equilibrium
isotherm studies for the sorption of divalent metal ions onto peat: Copper,
nickel and lead single component systems. Water, Air, and Soil Pollution 141(1-4):
1-33.
Hossain, M.A., Ngo, H.H., Guo, W.S., Nguyen, T.V. &
Vigneswaran, S. 2014. Performance of cabbage and cauliflower wastes for heavy
metals removal. Desalination and Water Treatment 52(4-6): 844-860.
Izhar, S., Chuan, L.Y. & Ismail, M.H.S. 2014. Removal of
boron and arsenic from petrochemical wastewater using zeolite as adsorbent. From
Sources to Solution, edited by Aris, A.Z., Tengku Ismail, T.H., Harun, R.,
Abdullah, A.M. & Ishak, M.Y. Singapore: Springer. pp. 439-443.
Jacques, R.A., Bernardi, R., Caovila, M., Lima, E.C., Pavan,
F.A., Vaghetti, J.C.P. & Airoldi, C. 2007. Removal of Cu(II), Fe(III), and
Cr(III) from aqueous solution by aniline grafted silica gel. Separation
Science and Technology 42(3): 591-609.
Javaid, A., Bajwa, R., Shafique, U. & Anwar, J. 2011.
Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass
and Bioenergy 35(5): 1675-1682.
Jiménez-Cedillo, M.J., Olguín, M.T., Fall, C. &
Colin-Cruz, A. 2013. As(III) and As(V) sorption on iron-modified non-pyrolyzed
and pyrolyzed biomass from Petroselinum crispum (parsley). Journal of
Environmental Management 117: 242-252.
Kamari, A., Yusoff, S.N.M., Abdullah, F. & Putra, W.P.
2014. Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous
solutions using coconut dregs residue: Adsorption and characterisation studies. Journal of Environmental Chemical Engineering 2(4): 1912-1919.
Kanawade, S.M. & Gaikwad, R.W. 2011. Removal of zinc
ions from industrial effluent by using cork powder as adsorbent. International
Journal of Chemical Engineering and Applications 2(3): 199-201.
Khosa, M.A., Wu, J. & Ullah, A. 2013. Chemical
modification, characterization, and application of chicken feathers as novel
biosorbents. RSC Advances 3(43): 20800.
Kim, K.H., Keller, A.A. & Yang, J.K. 2013. Removal of
heavy metals from aqueous solution using a novel composite of recycled
materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects 425:
6-14.
Krishnan, K.A. & Anirudhan, T.S. 2003. Removal of
cadmium(II) from aqueous solutions by steam-activated sulphurised carbon
prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water
SA 29(2): 147-156.
Lattuada, R.M., Peralba, M.C.R., Dos Santos, J.H.Z. &
Fisch, A.G. 2014. Peat, rice husk and rice husk carbon as low-cost adsorbents
for metals from acidic aqueous solutions. Separation Science and Technology 49(1):
101-111.
Lee, C.K., Low, K.S. & Chow, S.W. 1996. Chrome sludge as
an adsorbent for colour removal. Environmental Technology 17(9):
1023-1028.
Li, M., Cheng, X. & Guo, H. 2013. Heavy metal removal by
biomineralization of urease producing bacteria isolated from soil. International
Biodeterioration & Biodegradation 76: 81-85.
Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. & Guo, S.
2008. Tobacco stems as a low cost adsorbent for the removal of Pb(II) from
wastewater: Equilibrium and kinetic studies. Industrial Crops and Products 28(3):
294-302.
Liang, S., Guo, X., Feng, N. & Tian, Q. 2009.
Application of orange peel xanthate for the adsorption of Pb2+ from aqueous
solutions. Journal of Hazardous Materials 170(1): 425-429.
Lim, A.P., Aris, A.Z. & Juahir, H. 2014. An experimental
approach on the removal of Cd (II) and Pb (II) ions from aqueous solutions by
using dead calcareous skeletons. In From Sources to Solution, edited by
Aris, A.Z., Tengku Ismail, T.H., Harun, R., Abdullah, A.M. & Ishak, M.Y.
Singapore: Springer. pp. 117-120.
Mallaki, M. & Fatehi, R. 2014. Design of a biomass power
plant for burning date palm waste to cogenerate electricity and distilled
water. Renewable Energy 63(C): 286-291.
Mandal, N.K. 2014. Performance of low-cost bio adsorbents
for the removal of metal ions - A review. International Journal of Science
and Research 3(1): 177-180.
Marin, A.B.P., Ortuno, J.F., Aguilar, M.I., Meseguer, V.F.,
Saez, J. & Llorens, M. 2010. Use of chemical modification to determine the
binding of Cd(II), Zn(II) and Cr(III) ions by orange waste. Biochemical
Engineering Journal 53(1): 2-6.
Mavrov, V., Stamenov, S., Todorova, E., Chmiel, H. &
Erwe, T. 2006. New hybrid electrocoagulation membrane process for removing
selenium from industrial wastewater. Desalination 201(1-3): 290-296.
Mohan, D. & Pittman, C.U. 2007. Arsenic removal from
water/ wastewater using adsorbents - A critical review. Journal of Hazardous
Materials 142(1-2): 1-53.
Mohan, S. & Gandhimathi, R. 2009. Removal of heavy metal
ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal
of Hazardous Materials 169(1-3): 351-359.
Momcilovic, M., Purenovic, M., Bojic, A., Zarubica, A. &
Ranđelovic, M. 2011. Removal of lead(II) ions from aqueous solutions by
adsorption onto pine cone activated carbon. Desalination 276(1-3):
53-59.
Moore, J.W. & Ramamoorthy, S. 1984. Heavy Metals in
Natural Waters: Applied Monitoring and Impact Assessment. New York:
Springer. pp.77-99. http://link. springer.com/10.1007/978-1-4612-5210-8_5.
Muhammad, M.N. & Nwaedozie, J.M. 2012. Application of
marine biomass for the removal of metals from industrial wastewater. Indian
Journal of Innovations and Development 1(1): 36-44.
Namasivayam, C. & Senthilkumar, S. 1999. Adsorption of
copper(II) by “waste” Fe(III)/Cr(III) hydroxide from aqueous solution and
radiator manufacturing industry wastewater. Separation Science and
Technology 34(2): 201-217.
Narain, S., Ojha, C.S.P., Mishra, S.K., Chaube, U.C. &
Sharma, P.K. 2011. Cadmium and chromium removal by aquatic plant. International
Journal of Environmental Sciences 1(6): 1297-1304.
Olaofe, O., Olagboye, S.A., Akanji, P.S., Adamolugbe, E.Y.,
Fowowe, O.T. & Olaniyi, A.A. 2015. Kinetic studies of adsorption of heavy
metals on clays. International Journal of Chemistry 7(1): 48-54.
Oller, I., Malato, S. & Sánchez-Pérez, J.A. 2011.
Combination of advanced oxidation processes and biological treatments for
wastewater decontamination - A review. Science of the Total Environment 409(20):
4141-4166.
Opeolu, B.O.,
Bamgbose, O., Arowolo, T.A. & Adetunji, M.T. 2010. Utilization of
biomaterials as adsorbents for heavy metals’ removal from aqueous matrices. Scientific
Research and Essays 5(14): 1780-1787.
Paez-Hernandez, M.E., Aguilar-Arteaga, K., Galan-Vidal,
C.A., Palomar-Pardave, M., Romero-Romo, M. & Ramirez-Silva, M.T. 2005.
Mercury ions removal from aqueous solution using an activated composite
membrane. Environmental Science & Technology 39(19): 7667-7670.
Park, D., Yun, Y.S. & Park, J.M. 2010. The past,
present, and future trends of biosorption. Biotechnology and Bioprocess
Engineering 15(1): 86-102.
Pehlivan, E., Tran, H.T., Ouédraogo, W.K.I., Schmidt, C.,
Zachmann, D. & Bahadir, M. 2013. Sugarcane bagasse treated with hydrous
ferric oxide as a potential adsorbent for the removal of As(V) from aqueous
solutions. Food Chemistry 138(1): 133-138.
Purkayastha, D., Mishra, U. & Biswas, S. 2014. A
comprehensive review on Cd(II) removal from aqueous solution. Journal of
Water Process Engineering 2: 105-128.
Putra, W.P., Kamari, A., Yusoff, S.N.M., Ishak, C.F.,
Mohamed, A., Hashim, N. & Isa, I.M. 2014. Biosorption of Cu(II), Pb(II) and
Zn(II) ions from aqueous solutions using selected waste materials: Adsorption
and characterisation studies. Journal of Encapsulation and Adsorption Sciences 04(01): 25-35.
Qadeer, R. & Akhtar, S. 2005. Kinetics study of lead ion
adsorption on active carbon. Turk. J. Chem. 29: 95-99.
Qian, F., Sun, X., Liu, Y. & Xu, H. 2013. Removal and
transformation of effluent organic matter (EfOM) in biotreated textile
wastewater by GAC/O3 pre-oxidation and enhanced coagulation. Environmental
Technology 34(12): 1513-1520.
Rajamohan, N., Rajasimman, M. & Dilipkumar, M. 2014.
Parametric and kinetic studies on biosorption of mercury using modified Phoenix
dactylifera biomass. Journal of the Taiwan Institute of Chemical
Engineers 45(5): 2622-2627.
Rathinam, A., Maharshi, B., Janardhanan, S.K., Jonnalagadda,
R.R. & Nair, B.U. 2010. Biosorption of cadmium metal ion from simulated
wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic
study. Bioresource Technology 101(5): 1466-1470.
Ratna Kumar, P., Chaudhari, S., Khilar, K.C. & Mahajan,
S.P. 2004. Removal of arsenic from water by electrocoagulation. Chemosphere 55(9):
1245-1252.
Renge, V.C., Khedkar, S.V. & Pande, S.V. 2012. Removal
of heavy metals from waste water using low cost adsorbents: A review. Scientific
Reviews & Chemical Communications 2(4): 580-584.
Riahi, K., Mammou, A.B. & Thayer, B.B. 2009. Date-palm
fibers media filters as a potential technology for tertiary domestic wastewater
treatment. Journal of Hazardous Materials 161(2-3): 608-613.
Riaz, M., Nadeem, R., Hanif, M.A., Ansari, T.M. &
Rehman, K. 2009. Pb(II) biosorption from hazardous aqueous streams using Gossypium
hirsutum (Cotton) waste biomass. Journal of Hazardous Materials 161(1):
88-94.
Sahu, M.K., Mandal, S., Dash, S.S., Badhai, P. & Patel,
R.K. 2013. Removal of Pb(II) from aqueous solution by acid activated red mud. Journal
of Environmental Chemical Engineering 1(4): 1315-1324.
Saka, C., Şahin, Ö. & Küçük, M.M. 2012.
Applications on agricultural and forest waste adsorbents for the removal of
lead (II) from contaminated waters. International Journal of Environmental
Science and Technology 9(2): 379-394.
Sankararamakrishnan, N., Jaiswal, M. & Verma, N. 2014.
Composite nanofloral clusters of carbon nanotubes and activated alumina: An
efficient sorbent for heavy metal removal. Chemical Engineering Journal 235:
1-9.
Sciban, M., Radetic, B., Kevresan, Z. & Klasnja, M.
2007. Adsorption of heavy metals from electroplating wastewater by wood
sawdust. Bioresource Technology 98(2): 402-409.
Sha, L., Xueyi, G., Ningchuan, F. & Qinghua, T. 2009.
Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid
modified orange peel. Colloids and Surfaces B: Biointerfaces 73(1):
10-14.
Shahzad, A., Miran, W., Rasool, K., Nawaz, M., Jang, J.,
Lim, S.R. & Lee, D.S. 2017. Heavy metals removal by EDTA-functionalized
chitosan graphene oxide nanocomposites. RSC Advances 7(16): 9764-9771.
Shakoor, M.B., Niazi, N.K., Bibi, I., Murtaza, G.,
Kunhikrishnan, A., Seshadri, B., Shahid, M., Ali, S., Bolan, N.S., Ok, Y.S.,
Abid, M. & Ali, F. 2016. Remediation of arsenic-contaminated water using
agricultural wastes as biosorbents. Critical Reviews in Environmental
Science and Technology 46(5): 467-499.
Shyam, R., Puri, J.K., Kaur, H., Amutha, R. & Kapila, A.
2013. Single and binary adsorption of heavy metals on fly ash samples from
aqueous solution. Journal of Molecular Liquids 178: 31-36.
Singh, U. & Kaushal, R.K. 2013. Treatment of waste water
with low cost adsorbent - A review. VSRD International Journal of Technical
& Non-Technical Research 4(13): 33-42.
Sočo, E. & Kalembkiewicz, J. 2013. Adsorption of
nickel(II) and copper(II) ions from aqueous solution by coal fly ash. Journal
of Environmental Chemical Engineering 1(3): 581-588.
Soliman, A.M., Elwy, H.M., Thiemann, T., Majedi, Y., Labata,
F.T. & Al-Rawashdeh, N.A.F. 2016. Removal of Pb(II) ions from aqueous
solutions by sulphuric acid-treated palm tree leaves. Journal of the Taiwan
Institute of Chemical Engineers 58: 264-273.
Srivastav, R.K., Gupta, S.K., Nigam, K.D.P. & Vasudevan,
P. 1993. Use of aquatic plants for the removal of heavy metals from wastewater. International Journal of Environmental Studies 45(1): 43-50.
Srivastava, S.K., Singh, A.K. & Sharma, A. 1994. Studies
on the uptake of lead and zinc by lignin obtained from black liquor - a paper
industry waste material. Environmental Technology 15(4): 353-361.
Tan, G. & Xiao, D. 2009. Adsorption of cadmium ion from
aqueous solution by ground wheat stems. Journal of Hazardous Materials 164(2-3):
1359-1363.
Tan, W.T. 1985. Copper (II) adsorption by waste tea leaves
and coffee powder. Pertanika 8(2): 223-230.
UN WWAP 2003. United Nations World Water Assessment
Programme. The World Water Development Report 1: Water for People, Water
for Life. UNESCO: Paris, France.
Uzunoğlu, D., Gürel, N., Özkaya, N. & Özer, A.
2014. The single batch biosorption of copper(II) ions on Sargassum acinarum. Desalination and Water Treatment 52(7-9): 1514-1523.
Varga, M., Takacs, M., Zaray, G. & Varga, I. 2013.
Comparative study of sorption kinetics and equilibrium of chromium (VI) on
charcoals prepared from different low-cost materials. Microchemical Journal 107:
25-30.
Wang, S. & Peng, Y. 2010. Natural zeolites as effective
adsorbents in water and wastewater treatment. Chemical Engineering Journal 156(1):
11-24.
WHO
2011. Guidelines for drinking-water quality, World Health Organization, 20
Avenue Appia, 1211 Geneva 27, Switzerland
(http://www.who.int/water_sanitation_health/
publications/2011/dwq_guidelines/en/).
Yacob,
A.R., Mustapha, N.M., Ali, A. & Al Swaidan, H.M. 2013. One-step air
pyrolysis of date palm tree waste: Physical and morphological study. Journal
of Biobased Materials and Bioenergy 7(2): 223-228.
Yadav,
S.K., Singh, D.K. & Sinha, S. 2013. Adsorption study of lead(II) onto
xanthated date palm trunk: Kinetics, isotherm and mechanism. Desalination
and Water Treatment 51(34- 36): 6798-6807.
Yadav,
S.K., Sinha, S. & Singh, D.K. 2015. Chromium(VI) removal from aqueous
solution and industrial wastewater by modified date palm trunk. Environmental
Progress & Sustainable Energy 34(2): 452-460.
Zahra,
N. 2012. Lead removal from water by low cost adsorbents: a review. Pak. J.
Anal. Environ. Chem. 13(1): 01-08.
Zhang,
H., Xiang, L., Zhang, D. & Qing, H. 2012. Treatment of landfill leachate by
internal microelectrolysis and sequent Fenton process. Desalination and
Water Treatment 47(1-3): 243-248.
Zhu,
B., Fan, T. & Zhang, D. 2008. Adsorption of copper ions from aqueous
solution by citric acid modified soybean straw. Journal of Hazardous
Materials 153(1-2): 300-308.
Zwain,
H.M., Vakili, M. & Dahlan, I. 2014. Waste material adsorbents for zinc
removal from wastewater: A comprehensive review. International Journal of
Chemical Engineering 2014: 1-13.
*Pengarang
untuk surat-menyurat; email: mtamin@ksu.edu.sa
|