Sains Malaysiana 47(1)(2018): 67–76
http://dx.doi.org/10.17576/jsm-2018-4701-08
Phosphorus
Sorption and Saturation in the Ganges Tidal Floodplain Soils of Bangladesh
(Serapan
Fosforus dan Penepuan dalam Tanah Dataran Banjir Pasang Surut Ganges di
Bangladesh)
MD. FAZLUL HOQUE1, MD. HARUN-OR RASHID2, MD RAFIQUL ISLAM3, MD. SAIFUL ISLAM1,4* & MD. ABU SALEQUE5
1Department
of Soil Science, Patuakhali Science and Technology University, Dumki,
Patuakhali, 8602, Bangladesh
2Department
of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali,
8602
Bangladesh
3Department
of Soil Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
4Graduate School of
Environment and Information Sciences, Yokohama National University, 79-7
Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
5Bangladesh Rice
Research Institute, Gazipur, Bangladesh
Diserahkan: 15 Oktober 2015/Diterima: 19 Jun 2017
ABSTRACT
The soils developed from the Ganges sediments in the coastal area
of Bangladesh and India extend several thousand hectares and important from the
view point of rice cultivation. Phosphorus, one of the important environmental
and agricultural element, retention behavior of the Ganges floodplain soils is
poorly reported. The objective of this study was to determine maximum
phosphorus adsorption capacity (MPAC) and to develop Psat for
13 Ganges Tidal Floodplain soils of Bangladesh. The MPAC value
and Psat based on Mehlich-3 extractions were determined. The
conventional adsorption equations, such as the Langmuir, Freudlich and Temkin
equations were used to describe the P sorption of the studied soils. The MPAC value varied from 1250 to 2000 mg/kg and correlated with EC (r =
0.59, p<0.05) and CEC (r = -0.74, P<0.01). The
sorption capacity of the tested soils ranged from 511 to 545 mg/kg and the
calculated energy of adsorption of the soils varied from 0.192 to 1.00
μg/mL and it was a positively correlated with clay (r=0.7, p<0.01) and CEC (r
= 0.63, p<0.05) but negatively with silt (r= -0.80, p<0.01), pH (H2O) (r=-0.60, p<0.05) and with MPAC (r=-0.59,
p<0.05) values. Phosphorus saturation indices of the studied sample
demonstrated a far below the threshold critical limit of 25%.
Keywords: Adsorption; Bangladesh; buffering capacity; Langmuir
equation; phosphorus sorption
ABSTRAK
Tanah yang dibangunkan daripada enapan Ganges di pesisir pantai negara
Bangladesh dan India menganjur beberapa ribu hektar dan penting
daripada sudut pandangan penanaman padi. Fosforus, salah satu unsur
penting dalam alam sekitar dan pertanian, tingkah laku penahanan
di tanah dataran banjir Ganges telah dilaporkan secara tidak tepat.
Objektif kajian ini adalah untuk menentukan kemampuan maksimum penjerapan
fosforus (MPAC)
dan untuk membangunkan Psat bagi 13 tanah Dataran banjir air
pasang surut Ganges di Bangladesh. Nilai MPAC dan Psat berdasarkan
pengekstrakan Mehlich-3 telah ditentukan. Persamaan penjerapan konvensional,
seperti persamaan Langmuir, Freudlich dan Temkin telah digunakan
untuk menggambarkan serapan P daripada tanah yang dikaji. Nilai
MPAC berbeza-beza
daripada 1250 kepada 2000 mg/kg dan berkorelasi dengan EC (r
= 0.59, p<0.05) dan CEC (r =-0.74, P<0.01). Nilai kapasiti
serapan tanah yang diuji adalah daripada 511 kepada 545 mg/kg dan
tenaga yang dihitung daripada penjerapan tanah berbeza-beza daripada
0.192 kepada 1.00 μg/mL dan ia berkolerasi secara positif dengan
tanah liat (r= 0.7, p<0.01) dan CEC (r=0.63, p<0.05) tetapi negatif
dengan keladak (r=-0.80, p<0.01), pH (H2O) (r=-0.60, p<0.05)
dan MPAC (r=-0.59, p<0.05). Indeks tepu
fosforus sampel yang dikaji menunjukkan ia lebih rendah daripada
had kritikal ambang 25%.
Kata kunci: Bangladesh; keupayaan
penampanan; penjerapan; persamaan Langmuir; serapan fosforus
RUJUKAN
Abedin, M.J. & Saleque, M.A. 1998. Effects
of phosphorus fertilizer management on phosphorus sorption characteristics of
lowland rice soil. Thai Journal of Agricultural Science 31: 122-129.
Adeniyi, A.A., Yusuf, K.O. & Okedeyi, O.O.
2008. Assessment of the exposure of two fish species to metals pollution in the
Ogun river catchments, Kettu, Lagos, Nigeria. Environmental Monitoring and
Assessment 137: 451-458.
Babou, O.J., Shiow-Long, T. & Zeng, Y.H.
2007. Relationship between compost pH buffer capacity and P content on P
availability in a virgin Ultisol. Soil Science 172: 68-85.
Bartolome, V.I., Carrasco, M.C.C., Quintana,
L.C., Ferino, M.I.B., Mojica, J.Z., Olea, A.B., Paunnlagui, L.C., Ramos, C.G.,
Ynalvez, M.A. & Mclaren, C.G. 1998. Experimental design and data analysis
for agricultural research. Vol. 1. IRRI, Manila, Philippines.
Beauchemin, S. & Simadr, R.R. 1999. Soil
phosphorus saturation degree: Review of some indices and their suitability for
P management in Quebec, Canada. Canadian Journal of Soil Science 79:
615-625.
Davis, R.L., Zhang, H., Schroder, J.L., Wang,
J.J., Payton, M. & Zazulak, A. 2005. Soil characteristics and phosphorus
level effect on phosphorus loss in runoff. Journal of Environmental Quality 34:
1640-1650.
FRG. 2005. Fertilizer recommendation guide.
Soils Publication No. 45. Bangladesh Agricultural Research Council, Farmgate,
New Airport Road, Dhaka. p. 23.
Harter, R.D. 1984.
Curve-fit errors in Langmuir adsorption Maxima. Soil Science Society of
America Journal 48: 749- 752.
Hoque, M.F., Haque, M.A., Hossain, M.K., Haque, M.Z. &
Hussain, A.S.M.I. 2011. Characterization of some coastal delta soils of
Bangladesh. Journal of Bangladesh Society of Agricultural Science and
Technology 8: 77-82.
Hoque, M.F., Islam, M.S., Islam, M.R., Rashid, M.H. &
Saleque, M.A. 2015. Phosphorus fractionations in Ganges tidal floodplain soil
of Bangladesh. Bangladesh Rice Journal 19(2): 57-63.
Huber, H., Jacobs, E. & Visser, E.J.W. 2009. Variation
in flooding-induced morphological traits in natural populations of white clover
(Trifolium repens) and their effects on plant performance during soil flooding. Annals of Botany 103: 377-386.
Ige, D.V., Akinremi, O.O. & Flaten, D.N. 2005.
Environmental index for estimating the risk of phosphorus loss in calcareous
soils of Manitoba. Journal of Environmental Quality 34: 1944-1951.
Islam, M.A., Saleque, M.A., Karim, A.J.M.S., Solaiman,
A.R.M. & Masud, M.M. 2007. Characterization of acid piedmont rice soils for
phosphorus sorption and phosphorus saturation. Bulletin of the Institute of
Tropical Agriculture Kyushu Univ. 30: 11-27.
Islam, M.A., Saleque, M.A., Islam, M.S., Karim, A.J.M.S.,
Solaiman, A.R.M. & Islam, A. 2010. Phosphorus fractionations in acidic
piedmont rice soils. Communication Soil Science and Plant Analysis 41:
1178-1194.
Islam, M.S., Ahmed, M.K. & Al-mamun, M.H. 2015a. Metal
speciation in soil and health risk due to vegetables consumption in Bangladesh. Environmental Monitoring and Assessment 187: 288-303.
Islam, M.S., Ahmed, M.K. & Al-mamun, M.H. 2015b.
Distribution of trace elements in different soils and risk assessment: A case
study for the urbanized area in Bangladesh. Journal of Geochemical
Exploration 158: 212-222.
Islam, M.S., Ahmed, M.K., Al-mamun, M.H. & Masunaga, S.
2014. Trace metals in soil and vegetables and associated health risk
assessment. Environmental Monitoring and Assessment 186: 8727-8739.
Islam, R.M. 2003. Phosphorus chemistry in wetland rice soil
profile of a Vertic Haplustept. M.Sc. Thesis. Department of Soil
Science. Bangabandhu Sheikh Mujibur Rahman Agricultural University,
Salna, Gazipur (Unpublished).
Kleinman, P.J.A. & Sharpley, A.N. 2002. Estimating
phosphorus sorption saturation from Mehlich-3 data. Communications in Soil
Science and Plant Analysis 33: 1825-1839.
Lair, G.J., Zehetner, F., Khan, Z.H. & Gerzabek, M.H.
2009. Phosphorus sorption-desorption in alluvial soils of a young weathering
sequence at the Danube River. Geoderma 149: 39-44.
Litaor, M.I., Reichman, O., Haim, A., Auerswald, K. &
Shenker, M. 2005. Sorption characteristics of phosphorus in peat soils of
semiarid and altered wetland. Soil Science Society of America Journal 69:
1658-1665.
Manning, P., Putwain, P.D. & Webb, N.R. 2006. The role
of soil phosphorus sorption characteristics in the functioning and stability of
lowland heath ecosystems. Biogeochemistry 81: 205-217.
Mallarino, A.P. 1997. Interpretation of soil phosphorus
tests for corn in soils with varying pH and calcium carbonate content. Journal
of Production Agriculture 10: 163-167.
Mehadi, A.A. & Taylor, R.W. 1988. Phosphate adsorption
by two highly weathered soils. Soil Science Society of America Journal 52:
627-632.
Mehlich, A. 1984. Mehlich-3 soil test extraction: A
modification of Mehlich 2 extractant. Communications in Soil Science and
Plant Analysis 15: 1409-1416.
Mehra, O.P. & Jackson, M.L. 1960. Iron oxide removal
from soils and clays by dithionite citrate system buffered with sodium
bicarbonate. Proc. 7th Nat. Conf. Clays and Clay Min. New York: Pergamon
Press. pp. 317-327.
Murphy, J. & Riley, J.P. 1962. A modified single
solution method for determination of phosphate in natural waters. Analytica
Chemica Acta 27: 31-36.
Nelson, D.W. & Sommers, L.E. 1982. Total carbon, organic
carbon, and organic matter. In Methods of Soil Analysis, Part 2: Chemical
and Microbiological Properties. 2nd ed., edited by Page, A.L., Miller, R.H.
& Keeney, D.R. Madison, Wisconsin: American Society of Agronomy, Inc. &
Soil Science Society of America, Inc. pp. 539-577.
Nizam, M.U., Shariful, M. & Saleque, M.A. 2008.
Phosphorus sorption in clay loam soils influenced by phosphatic fertilizer. International
Journal of Sustainable Agriculture 4: 12-17.
Rupa, T.R., Tomar, K.P., Srinivasa Rao, C.H. & Subba
Rao, A. 2001. Kinetics of phosphate sorption-desorption as influenced by soil
pH and electrolyte. Agrochimica 45: 124-133.
Saleque, M.A. & Kirk, G.J.D. 1995. Root-induced
solubilization of phosphate in the rhizosphere of lowland rice. New
Phytologist 129: 325-336.
Saleque, M.A., Naher, U.A., Pathan, A.B.M.B.U., Hossain,
A.T.M.S. & Meisner, C.A. 2004. Inorganic and organic phosphorus fertilizer
effects on the phosphorus fraction in wetland rice soils. Soil Science
Society of America Journal 68: 1635-1644.
Saleque, M.A., Uddin, M.K., Salam, M.A., Ismail, A.M. &
Haefele, S.M. 2010. Soil characteristics of saline and non-saline deltas of
Bangladesh. In Tropical Deltas and Coastal Zones: Food Production,
Communities and Environment at the Land and Water Interface, edited by Hoanh,
C.T., Szuster, B., Kam, S., Ismail, A. & Noble, A. CAB International,
Wallingford, U.K. pp. 144-153.
Sharpley, A.N. 1996. Availability of residual phosphorus in
manured soils. Soil Science Society of America Journal 60: 1459-1466.
Sui, Y. & Thompson, M.L. 2000. Phosphorus sorption,
desorption and buffering capacity in a biosolids amended mollisol. Soil
Science Society of America Journal 64: 164-169.
Wang, Y., Shen, Z., Niu, J. & Liu, R. 2008. Adsorption
of phosphorus on sediments from the Three-Gorges Reservoir (China) and the
relation with sediment composition. Hazard Mater. 18554791 (P.S.G.E.B.D).
College of Natural Resources and Environmental Science, Zhejiang University,
Hangzhou 310029, PR China (Unpublished).
Wardle, D.A., Walker, L.R. & Bardgett, R.D. 2004.
Ecosystem properties and forest decline in contrasting long-term
chronosequences. Science 305: 509-513.
Zhang, H., Schroder, J.L., Furman, J.K., Basta, N.T. &
Payton, M.E. 2005. Path and multiple regression analyses of phosphorus sorption
capacity. Soil Science Society of America Journal 69: 96-106.
Zhou,
M. & Li, Y. 2001. Phosphorus-sorption characteristics of calcareous soils
and limestone from the southern everglades and adjacent farmlands. Soil
Science Society of America Journal 65: 1404-1412.
*Pengarang
untuk surat-menyurat; email: islam-md.saiful-nj@ynu.jp
|