Sains Malaysiana 47(1)(2018): 77–84
http://dx.doi.org/10.17576/jsm-2018-4701-09
Evaluation
of Climate Variability Performances using Statistical Climate Models
(Penilaian
Prestasi Kebolehubahan Iklim menggunakan Model Statistik Iklim)
NURUL NADRAH AQILAH TUKIMAT1,2*, AHMAD SAIFUDDIN OTHMAN1, SAFFUAN WAN AHMAD1,2 & KHAIRUNISA MUTHUSAMY1,2
1Faculty of Civil
Engineering & Earth Resources, Universiti Malaysia Pahang, 26300 Kuantan,
Pahang Darul Makmur, Malaysia
2Centre for Earth
Resources Research & Management (CERRM), Universiti Malaysia Pahang, 26300
Kuantan, Pahang Darul Makmur, Malaysia
Diserahkan:
16 Februari 2017/Diterima: 30 Jun 2017
ABSTRACT
Uncertainty of the climates nowadays bring the crucial calamities
problems especially at unexpected areas and in anytime. Thus, the projection of
climate variability becomes significant information especially in the
designing, planning and managing of water resources and hydrological systems.
Numerous climate models with varies methods and purposes have been developed to
generate the local weather scenarios with considered the greenhouse gasses (GHGs)
effect provided by General Circulation Models (GCMs).
However, the accuracy and suitability of each climate models are depending on
the atmospheric characters’ selection and the variables consideration to form
the statistical equation of local-global weather relationship. In this study,
there are two well-known statistical climate models were considered; Lars-WG and SDSM models represent for the regression and weather typing methods,
respectively. The main aim was to evaluate the performances among these climate
models suit for the Pahang climate variability for the upcoming year
Δ2050. The findings proved the Lars-WG as a reliable climate
modelling with undemanding data sources and use simpler analysis method
compared to the SDSM. It is able to produce better
rainfall simulated results with lesser %MAE and higher R value close to
1.0. However, the SDSM lead in the temperature
simulation with considered the most influenced meteorological parameters in the
analysis. In year Δ2050, the temperature is expected to rise achieving
35°C. The rainfall projection results provided by these models are not
consistent whereby it is expecting to increase 2.6% by SDSM and
reduce 1.0% by Lars-WG from the historical trend and
concentrated on Nov.
Keywords: Climate performance; climate prediction; lars-wg; Pahang
climate; SDSM
ABSTRAK
Ketidaktentuan cuaca kini membawa kepada bencana alam yang dahsyat
terutama kepada kawasan yang tidak dijangka dan dalam masa yang
tidak menentu. Oleh itu, unjuran perubahan iklim menjadi maklumat
penting terutama dalam reka bentuk, perancangan dan pengurusan sumber
air dan sistem hidro. Pelbagai model iklim dengan metod dan tujuan
yang berbeza telah dibangunkan untuk menjana senario iklim setempat
dengan mengambil kira kesan gas rumah hijau yang dibekalkan oleh
Model Sikulasi Umum (GCMs). Namun, ketepatan dan keseimbangan
setiap model iklim adalah bergantung kepada pemilihan ciri atmosfera
dan variasi yang digunakan untuk membentuk persamaan statistik bagi
hubungan cuaca setempat-global. Dalam kajian ini, 2 model iklim
statistik telah digunakan; Model Lars-WG dan Model SDSM mewakili
kaedah regresi dan kaedah cuaca penaipan. Tujuan utama adalah untuk
menilai prestasi antara model yang bersesuaian dengan kebolehubahan
iklim di Pahang pada tahun 2050. Keputusan telah menunjukkan bahawa
Lars-WG sebagai
model iklim yang boleh dipercayai tanpa memerlukan sumber data yang
banyak dan menggunakan kaedah yang lebih mudah berbanding SDSM.
Ia juga dapat menghasilkan keputusan simulasi yang lebih baik dengan
%MAE
yang lebih sedikit dan nilai R menghampiri 1.0. Walau
bagaimanapun, SDSM mengungguli
bagi simulasi suhu dengan mengambil kira parameter meteorologi yang
paling berpengaruh dalam analisis. Keputusan unjuran iklim menunjukkan
bahawa suhu dianggarkan akan meningkat sehingga mencecah 35°C.
Walau bagaimanapun, model tersebut menghasilkan laporan unjuran
hujan yang tidak tekal dengan hujan tahunan dianggarkan meningkat
sebanyak 2.6% oleh SDSM dan
berkurangan sebanyak 1.0% oleh Lars-WG daripada sejarah aliran dengan
anggaran bahawa hujan lebat tertumpu pada bulan Nov.
Kata kunci: Iklim Pahang; jangkaan iklim;
lars-wg; prestasi iklim; SDSM
RUJUKAN
Chen, H., Guo, J., Zhang, Z. & Xu, C. 2012. Prediction of
temperature and precipitation in Sudan and South Sudan by using LARS-WG in
future. Theoretical and Applied Climatology 113(3-4): 363-375.
doi:10.1007/s00704-012- 0793-9.
Chu, J.T., Xia, J., Xu, C.Y. & Singh, V.P. 2009. Statistical
downscaling of daily mean temperature, pan evaporation, and precipitation for
climate change scenarios in Haihe River, China. Theoretical and Applied
Climatology 99(1-2): 149-161. doi:10.1007/s00704-009-0129-6.
Hashmi, M.Z., Shamseldin, A.Y. & Melville,
B.W. 2011. Statistical downscaling of watershed precipitation using gene
expression programming (GEP). Environmental Modeling Software 26(12):
1639-1646. doi:10.1016/j. envsoft.2011.07.007.
Hashmi,
M.Z., Shamseldin, A.Y. & Melville, B.W. 2009. Statistical downscaling of
precipitation: State-of-the-art and application of Bayesian multi-model
approach for uncertainty assessment. Hydrol. Earth Syst. Sci. 6:
6535-6579.
Hassan,
Z. & Harun, S. 2012. Application of statistical downscaling model for long
lead rainfall prediction in Kurau River catchment of Malaysia. Malaysia
Journal of Civil Engineering 24(1): 1-12.
Hamidon,
N., Harun, S., Malek, M.A., Ismail, T. & Alias, N. 2015. Prediction f paddy
irrigation requirements using statistical downscaling and cropwat models: A
case study from Kerian Irrigation Scheme in Malaysia. Jurnal Teknologi 76(1):
281-288.
Ismail,
M., Suroto, A., Ismail, N.A. & Latif, M.T. 2014. Surface ozone trend in
major rice growing areas in Malaysia. Sains Malaysiana 43(3): 321-329.
Kwan,
M.S., Fredolin, T.T. & Juneng, L. 2013. Projected changes of future climate
extremes in Malaysia. Sains Malaysiana 42(8): 1051-1058.
Lee,
J.H.W. & Lam, K.M. 2004. Environmental hydraulics and sustainable water
management two volume set. Proceedings of the 4th International Symposium on
Environmental Hydraulics & 14th Congress of Asia and Pacific Division. International
Association of Hydraulic Engineering and Research, 15-18 December, Hong Kong.
Mohsen,
S., Zulkifli, Y., Milad, J. & Fadhilah, Y. 2014. Development of generalized
feed forward network for predicting annual flood (depth) of a tropical river. Sains
Malaysiana 43(12): 1865-1871.
Semenov,
M.A. & Barrow, E.M. 2002. LARS-WG - A Stochastic Weather Generator for
use in Climate Impact Studies. Hertfordshire: Rothamsted Research
Harpenden.
Tukimat,
N.N.A. & Harun, S. 2013. The projection of future rainfall change over
Kedah, Malaysia with the statistical downscaling model. MJCE 23: 67-79.
Tukimat,
N.N.A. & Alias, N.A. 2016. Assessment the potential of SRES scenario for
Kuala Sala, Malaysia. IOSR-JMCE 13(3): 06-12.
Wilby,
R.L. & Dawson, C.W. 2007. SDSM 4.2 - A Decision Support Tool for the
Assessment of Regional Climate Change Impacts. Lancaster University,
Science Department, Environment Agency of England and Wales Department of
Computer Science, Loughborough University, UK.
Yano,
T., Aydin, M. & Haraguchi, T. 2007. Impact of climate change on irrigation
demand and crop growth in a Mediterranean environment of turkey. Sensors 7(10):
2297- 2315.
*Pengarang
untuk surat-menyurat; email: nadrah@ump.edu.my
|