Sains Malaysiana 47(2)(2018): 287-294

http://dx.doi.org/10.17576/jsm-2018-4702-10

 

Effect of Chitosan Coating on Chilling Injury, Antioxidant Status and Postharvest Quality of Japanese Cucumber during Cold Storage

(Kesan Perlakuan Bahan Salut Kitosan ke atas Kecederaan Sejuk, Status Antioksidan dan Kualiti Lepas Tuai Timun Jepun semasa Penyimpanan Suhu Rendah)

 

Nur Fatin Afifah Hashim1, Azhane Ahmad1,2* & Paa Kwesi Bordoh1

 

1School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus,

43500 Semenyih, Selangor Darul Ehsan, Malaysia

 

2School of Food Science and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Diserahkan: 3 Januari 2017/Diterima: 17 Julai 2017

 

ABSTRACT

 

Japanese cucumber (Cucumis sativus L.) could easily develop chilling injury when held at 7oC or below, thus limiting its storability and reduces consumer preference. Chitosan coating is known to be one of the methods used for preserving perishable fresh produce. This work was extended out to look into the efficacy of low molecular weight (LMW) chitosan coatings on chilling injury (CI), antioxidant levels and shelf life quality of Japanese cucumber. Fruit were coated with 0.5, 1.0 and 1.5% chitosan prior to cold storage at 7oC and 90-95% relative humidity (RH) for 12 days. The result showed that fruit coated with lowest concentration of chitosan (0.5%) was the most effective in alleviating chilling injury symptoms and reduced the increase of lipid peroxidation (MDA content) compared to higher concentrations (1.0 and 1.5%). Furthermore, when Japanese cucumbers were coated with 0.5% chitosan, it was able to maintain the postharvest quality and storability with higher firmness and delayed increase of weight loss. On the other hand, cucumber coated with 1.5% chitosan demonstrated high level of ascorbate peroxidase (APX) and catalase (CAT) activities than in 0.5 and 1.0% chitosan. This finding suggests a role for chitosan coating in alleviating oxidative stress that would lead to CI problems during cold storage.

 

Keywords: Antioxidant enzyme activity; chilling tolerance; chitosan; postharvest quality

 

ABSTRAK

 

Fenomena kecederaan sejuk (KS) seringkali berlaku ke atas timun Jepun (Cucumis sativus L.) yang disimpan pada suhu 7oC atau lebih rendah, sekaligus mengehadkan hayat simpanan di samping mempengaruhi kualiti buah untuk diterima oleh pengguna. Bahan salut kitosan dikenali sebagai salah satu kaedah lepas tuai yang digunakan untuk mengekalkan kualiti buah daripada mudah rosak. Kajian ini dijalankan untuk mengkaji keberkesanan bahan salut kitosan yang berberat molekul rendah ke atas kecederaan sejuk (KS), aktiviti antioksidan dan kualiti hayat simpanan timun Jepun. Buah diberikan perlakuan bahan salut kitosan dengan kepekatan 0.5, 1.0 dan 1.5% dan disimpan pada suhu rendah 7oC dengan kelembapan relatif 90-95% selama 12 hari. Keputusan kajian menunjukkan buah yang disalut dengan kepekatan kitosan paling rendah (0.5%) berupaya mengaleviasi simptom KS dan menindas aras peningkatan peroksidaan lipid (kandungan MDA) secara signifikan berbanding kitosan pada kepekatan lebih tinggi (1.0 dan 1.5%). Perlakuan 0.5% kitosan juga berupaya memelihara kualiti timun Jepun, memanjangkan hayat simpanan dengan memperlahankan kemerosotan ketegaran dan kehilangan berat. Sebaliknya, buah yang disalut kitosan pada kepekatan 1.5% menunjukkan aktiviti enzim katalase (CAT) dan askorbat peroksidase (APX) yang lebih tinggi berbanding buah yang disalut dengan 0.5 dan 1.0% kitosan. Keputusan kajian ini mencadangkan perlakuan bahan salut kitosan berupaya mengurangkan kepayahan oksidatif yang dipercayai menyebabkan masalah KS semasa penyimpanan suhu rendah.

 

Kata kunci: Aktiviti antioksidan enzimatik; kitosan; kualiti lepas tuai; toleransi kecederaan sejuk

 

RUJUKAN

 

Ali, Z.M., Chin, L.H., Marimuthu, M. & Lazan, H. 2004. Low temperature storage and modified atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification and chilling injury symptoms. Postharvest Biol. Technol. 33: 181-192.

Al-Juhaimi, F., Ghafoor, K. & Babiker, E.E. 2012. Effect of gum arabic edible coating on weight      loss, firmness and sensory characteristics of cucumber (Cucumis sativus L.) fruit during storage. Pak. J. Bot. 44: 1439-1444.

Badawy, M.E.I. & Rabea, E.I. 2009. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 51: 110-117.

Bautista-Banos, S., Hernandez-Lauzardo, A.N., Velazquez-del Valle, M.G., Hernandez-Lopez, M., Ait-Barka, E., Bosquez-Molina, E. & Wilson, C.L. 2006. Chitosan as potential natural compound to control pre and postharvest disease of horticultural commodities. Crop Proc. 25: 108-118.

Bautista-Banos, S., Hernandez-Lopez, M., Bosquez-Molina, E. & Wilson, C.L. 2003. Effects of chitosan and plant extracts on growth of Colletotricum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Proc. 22: 1087-1092.

Beers, R.F. & Sizers, I.W. 1952. A spectrophotometric method for measuring the breakdown    of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140.

Benjakul, S., Visessanguan, W., Tanaka, M., Ishizaki, S. & Suthidham, R. 2000. Effect of chitin and chitosan on gelling properties of surimi from barred garfish (Hemiramphus far). J. Sci. Food Agric. 81(1): 102-108.

Cao, S., Zheng, Y., Wang, K., Jin, P. & Rui, H. 2009. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 115: 1458-1463.

Chen, B. & Yang, H. 2012. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status. J. Sci. Food Agric. 93: 1915-1921.

Dang, Q.F., Yan, J.Q., Li, Y., Cheng, X.J., Liu, C.S. & Chen, X.G. 2010. Chitosan acetate as an active coating material and its effects on the storing of Prunus aviumb L. J. Food Sci. 75: 125-131.

El Ghaouth, A., Arul, J., Asselin, A. & Benhamou, N. 1992. Antifungal activity of chitosan on postharvest pathogens: Induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Res. 96: 769-779.

Fang, S., Li, C.F. & Shih, C. 1994. Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 56: 136-140.

Garcia, M., Casariego, A., Diaz, R. & Roblejo, L. 2014. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emir. J. Food Agriculture. 26: 238-246.

Ghasemnezhad, M., Shiri, M.A. & Sanavi, M. 2010. Effect of chitosan coatings on some quality indices of apricot (Prunus armeniace L.) during cold storage. Caspian J. Env. Sci. 8: 25-33.

Gol, N.B., Patel, P.R. & Rao, T.V.R. 2013. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85: 185-195.

Hariyadi, P. & Parkin, K.L. 1991. Chilling-induced oxidative stress in cucumber fruits. Postharvest Biol. Technol. 1: 33-45.

Hirano, S. & Nagao, N. 1989. Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agri. and Biol. Chem. 53(11): 3065-3066.

Hoagland, P.D. & Parris, N. 1996. Chitosan/pectin laminated films. J. Agric. Food Chem. 44(7): 1915-1919.

Hodges, D.M., DeLong, J.M., Forney, C.F. & Prange, R.K. 1999. Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611.

Hong, K., Xie, J., Zhang, L., Sun, D. & Gong, D. 2012. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Scientia Hort. 144: 172-178.

Imahori, Y., Takemura, M. & Bai, J. 2008. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 49: 54-60.

Kulpinsky, P., Nishimura, S.I. & Tokura, S. 1997. Preparation and characterization of functionalized chitosan fibers. Adv. Chitin Sci. 2: 334-338.

Lafontaine, P.J. & Benhamou, N. 1996. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxys-porum f. sp. radicis-lycopersici. Biocontrol Sci. Technol. 6: 11-124.

Lang, G. & Clausen, T. 1989. The use of chitosan in cosmetics. In Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties and Applications, edited by Skjak- Braek, G., Anthosen, T. & Stanford, P.A. London: Elsevier Applied Science. pp. 139-147.

Liu, J., Tian, S.P., Meng, X.H. & Xu, Y. 2007. Control effects of chitosan on postharvest diseases and physiological response of tomato fruit. Postharvest Biol. Technol. 44: 300-306.

Liu, X.D., Nishi, N., Tokura, S. & Sakari, N. 2001. Chitosan coated cotton fiber: Preparation and physical properties. Carbohydr. Polym. 44(3): 233-238.

Makino, Y. & Hirata, T. 1997. Modified atmosphere packaging of fresh produce with a biodegradable laminate chitosan-cellulose and polycaprolactone. Postharvest Biol. Technol. 10(3): 247-254.

Maqbool, M., Ali, A., Alderson, P.G., Zahid, N. & Siddiqui, Y. 2011. Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. J. Agric. Food Chem. 59: 5474-5482.

Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.

Nishimura, Y. 1997. Physiological effects of chitosan administered for long period. Food Style 21: 50-52.

Nukuntornprakit, O., Chanjirakul, K. & Doorn, W.G.V. 2015. Chilling injury in pineapple fruit: Fatty acid composition and antioxidant metabolism. Postharvest Biol. Technol. 99: 20-26.

Pennisi, E. 1992. Sealed in plastic edible film. Sci. News 141: 12-13.

Perdones, A., Sánchez-González, L., Chiralt, A. & Vargas, M. 2012. Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 70: 32-41.

Pushkala, R., Raghuram, P.K. & Srividya, N. 2013. Chitosan based powder coatin technique to enhance phytochemicals and shelf life quality of radish shreds.  Postharvest Biol. Technol. 86: 402-408.

Qian, C., He, Z., Zhao, Y., Mi, H., Chen, X. & Mao, L. 2012. Maturity-dependent chilling tolerance regulated by the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruits. J. Sci. Food Agric. 93: 626-633.

Ren, H., Endo, H. & Hayashi, T. 2001. Antioxidative and antimutagenic activities and polyphenol content of pesticide-free and organically cultivated green vegetable using water-soluble chitosan as a soil modifier and leaf surface spray. J. Sci. Food Agric. 81(15): 1426-1432.

Roller, S. & Covill, N. 1999. The antifungal properties of chitosan in laboratory media in apple juice. Int. J. Food Microbiol. 47(1-2): 67-77.

Romanazzi, G., Feliziani, E., Santini, M. & Landi, L. 2013. Effectiveness of postharvest treatment with chitosan and other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 75: 4-27.

Sala, J.M. & Lafuente, M.T. 2004. Antioxidant enzymes activities and rindstaining in ‘Navelina’ oranges as affected by storage relative humidity and ethylene conditioning. Postharvest Biol. Technol. 3: 277-285.

Sapers, G.M. 1992. Chitosan enhances control of enzymatic browning in apple and pear juice by filtration. J. Food Prot. 57(5): 1192-1193.

Shahidi, F., Kamil, J.K., Jeon, Y.J. & Kim, S.K. 2002. Antioxidant role of chitosan in a cooked cod (Gadus morhua) model system. J. Food Lipids 9(1): 57-64.

Tan, C.K., Ali, Z.M. & Zainal, Z. 2012. Changes in ethylene production, carbohydrase activity and  antioxidant status in pepper fruits during ripening. Scientia Hort. 142: 23-31.

Terry, L.A. & Joyce, D.C. 2004. Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biol. Technol. 32: 1-13.

Uchida, Y., Lzume, M. & Ohtakara, A. 1989. Preparation of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, edited by Skjak-Brak, G., Anthonsen, T. & Sandford, P.A. London: Elsevier Applied Science. pp. 373-382.

Wang, S.Y. & Gao, H. 2013. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Sci. Technol. 52: 71-79.

Wang, B., Wang, J., Liang, H., Yi, J., Zhang, J., Lin, L., Wu, Y., Feng, X., Cao, J. & Jiang, W. 2008. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 48: 172-181.

Xu, M., Dong, J., Zhang, M., Xu, X. & Sun, L. 2012. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. Postharvest Biol. Technol. 65: 5-12.

Xu, S., Chen, X. & Sun, D.W. 2001. Preservation of kiwifruit coated with edible film at ambient temperature. J. Food Engineering 50: 211-216.

Yang, H., Wu, F. & Cheng, J. 2011. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 127: 1237-1242.

Zeng, K., Deng, Y., Ming, J. & Deng, L. 2010. Induction of disease resistance and ROS metabolism in navel orange by chitosan. Scientia Horti. 126: 223-228.

Zhang, Y., Zhang, M. & Yang, H. 2015. Postharvest chitosan-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chem. 174: 558-563.

Zhang, Z., Nakano, K. & Maezawa, S. 2009. Comparison of the antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biol. Technol. 54: 101-105.

 

 

*Pengarang untuk surat-menyurat: azhane_ahmad@yahoo.com.my

 

 

 

 

 

sebelumnya