Sains Malaysiana 47(2)(2018): 287-294
http://dx.doi.org/10.17576/jsm-2018-4702-10
Effect of Chitosan Coating
on Chilling Injury, Antioxidant Status and Postharvest Quality of Japanese Cucumber
during Cold Storage
(Kesan Perlakuan Bahan
Salut Kitosan ke atas Kecederaan Sejuk, Status Antioksidan dan Kualiti Lepas Tuai
Timun Jepun semasa Penyimpanan Suhu Rendah)
Nur
Fatin Afifah Hashim1, Azhane Ahmad1,2* & Paa Kwesi
Bordoh1
1School of Biosciences,
Faculty of Science, University of Nottingham Malaysia Campus,
43500 Semenyih, Selangor Darul
Ehsan, Malaysia
2School of Food Science
and Technology, Universiti Malaysia Terengganu, 21030 Kuala Nerus,
Terengganu Darul Iman, Malaysia
Diserahkan: 3 Januari 2017/Diterima:
17 Julai 2017
ABSTRACT
Japanese cucumber (Cucumis
sativus L.) could easily develop
chilling injury when held at 7oC or below, thus limiting its
storability and reduces consumer preference. Chitosan coating is known to be
one of the methods used for preserving perishable fresh produce. This work was
extended out to look into the efficacy of low molecular weight (LMW) chitosan
coatings on chilling injury (CI), antioxidant levels and shelf life quality of
Japanese cucumber. Fruit were coated with 0.5, 1.0 and 1.5% chitosan prior to cold
storage at 7oC and 90-95% relative humidity (RH) for 12 days. The result
showed that fruit coated with lowest concentration of chitosan (0.5%) was the most
effective in alleviating chilling injury symptoms and reduced the increase of
lipid peroxidation (MDA content) compared to higher concentrations (1.0 and
1.5%). Furthermore, when Japanese cucumbers were coated with 0.5% chitosan, it
was able to maintain the postharvest quality and storability with higher
firmness and delayed increase of weight loss. On the other hand, cucumber
coated with 1.5% chitosan demonstrated high level of ascorbate peroxidase (APX)
and catalase (CAT) activities than in 0.5 and 1.0% chitosan. This finding suggests
a role for chitosan coating in alleviating oxidative stress that would lead to
CI problems during cold storage.
Keywords: Antioxidant enzyme activity; chilling tolerance; chitosan;
postharvest quality
ABSTRAK
Fenomena kecederaan sejuk (KS) seringkali berlaku ke
atas timun Jepun (Cucumis sativus L.) yang disimpan pada suhu 7oC atau lebih
rendah, sekaligus mengehadkan hayat simpanan di samping mempengaruhi kualiti buah
untuk diterima oleh pengguna. Bahan salut kitosan dikenali sebagai salah satu
kaedah lepas tuai yang digunakan untuk mengekalkan kualiti buah daripada mudah
rosak. Kajian ini dijalankan untuk mengkaji keberkesanan bahan salut kitosan
yang berberat molekul rendah ke atas kecederaan sejuk (KS), aktiviti antioksidan
dan kualiti hayat simpanan timun Jepun. Buah diberikan perlakuan bahan salut kitosan
dengan kepekatan 0.5, 1.0 dan 1.5% dan disimpan pada suhu rendah 7oC
dengan kelembapan relatif 90-95% selama 12 hari. Keputusan kajian menunjukkan buah
yang disalut dengan kepekatan kitosan paling rendah (0.5%) berupaya
mengaleviasi simptom KS dan menindas aras peningkatan peroksidaan lipid
(kandungan MDA) secara signifikan berbanding kitosan pada kepekatan lebih
tinggi (1.0 dan 1.5%). Perlakuan 0.5% kitosan juga berupaya memelihara kualiti
timun Jepun, memanjangkan hayat simpanan dengan memperlahankan kemerosotan
ketegaran dan kehilangan berat. Sebaliknya, buah yang disalut kitosan pada
kepekatan 1.5% menunjukkan aktiviti enzim katalase (CAT) dan askorbat
peroksidase (APX) yang lebih tinggi berbanding buah yang disalut dengan 0.5 dan
1.0% kitosan. Keputusan kajian ini mencadangkan perlakuan bahan salut kitosan
berupaya mengurangkan kepayahan oksidatif yang dipercayai menyebabkan masalah
KS semasa penyimpanan suhu rendah.
Kata kunci: Aktiviti antioksidan enzimatik; kitosan; kualiti lepas
tuai; toleransi kecederaan sejuk
RUJUKAN
Ali, Z.M., Chin, L.H., Marimuthu, M. & Lazan, H. 2004. Low temperature storage and modified
atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification
and chilling injury symptoms. Postharvest Biol. Technol. 33: 181-192.
Al-Juhaimi, F., Ghafoor, K. & Babiker, E.E. 2012. Effect of gum arabic edible coating on weight loss, firmness and sensory characteristics
of cucumber (Cucumis sativus L.)
fruit during storage. Pak. J. Bot. 44: 1439-1444.
Badawy, M.E.I. & Rabea, E.I. 2009. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of
tomato fruit. Postharvest Biol. Technol. 51: 110-117.
Bautista-Banos, S., Hernandez-Lauzardo, A.N.,
Velazquez-del Valle, M.G., Hernandez-Lopez, M., Ait-Barka, E., Bosquez-Molina,
E. & Wilson, C.L. 2006. Chitosan as potential natural compound to control
pre and postharvest disease of horticultural commodities. Crop Proc. 25: 108-118.
Bautista-Banos, S., Hernandez-Lopez, M.,
Bosquez-Molina, E. & Wilson, C.L. 2003. Effects of chitosan and plant
extracts on growth of Colletotricum
gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Proc. 22: 1087-1092.
Beers, R.F. & Sizers, I.W. 1952. A spectrophotometric method for
measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195: 133-140.
Benjakul,
S., Visessanguan, W., Tanaka, M., Ishizaki, S. & Suthidham, R. 2000. Effect
of chitin and chitosan on gelling properties of surimi from barred garfish
(Hemiramphus far). J. Sci. Food Agric. 81(1): 102-108.
Cao, S., Zheng, Y., Wang, K.,
Jin, P. & Rui, H. 2009. Methyl jasmonate reduces chilling injury and
enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem. 115: 1458-1463.
Chen, B. & Yang, H. 2012. 6-Benzylaminopurine alleviates chilling injury of postharvest cucumber fruit
through modulating antioxidant system and energy status. J. Sci. Food Agric. 93: 1915-1921.
Dang, Q.F., Yan, J.Q., Li, Y., Cheng, X.J., Liu, C.S. & Chen, X.G. 2010. Chitosan acetate as an active coating material and its effects on the
storing of Prunus aviumb L. J. Food Sci. 75: 125-131.
El Ghaouth, A., Arul,
J., Asselin, A. & Benhamou, N. 1992. Antifungal activity of chitosan on
postharvest pathogens: Induction of morphological and cytological alterations
in Rhizopus stolonifer. Mycological Res. 96: 769-779.
Fang, S., Li, C.F. &
Shih, C. 1994. Antifungal activity of
chitosan and its preservative effect on low-sugar candied kumquat. J. Food Prot. 56: 136-140.
Garcia, M., Casariego, A., Diaz, R. & Roblejo, L. 2014. Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated
storage. Emir. J. Food Agriculture. 26: 238-246.
Ghasemnezhad, M., Shiri, M.A. & Sanavi, M. 2010. Effect of chitosan coatings on some quality indices of
apricot (Prunus armeniace L.) during
cold storage. Caspian J. Env. Sci. 8: 25-33.
Gol, N.B., Patel, P.R. & Rao, T.V.R. 2013. Improvement
of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85: 185-195.
Hariyadi, P. & Parkin, K.L. 1991. Chilling-induced oxidative stress in
cucumber fruits. Postharvest Biol. Technol. 1: 33-45.
Hirano, S. & Nagao,
N. 1989. Effects of chitosan, pectic
acid, lysozyme, and chitinase on the growth of several phytopathogens. Agri. and Biol. Chem. 53(11): 3065-3066.
Hoagland, P.D. & Parris, N. 1996.
Chitosan/pectin laminated films. J. Agric.
Food Chem. 44(7): 1915-1919.
Hodges, D.M., DeLong, J.M., Forney, C.F. & Prange, R.K. 1999. Improving the thiobarbituric
acid reactive-substances assay for estimating lipid peroxidation in plant tissues containing
anthocyanin and other interfering compounds. Planta 207: 604-611.
Hong, K., Xie, J., Zhang, L., Sun, D. & Gong, D.
2012. Effects of chitosan coating on postharvest life and quality of guava (Psidium
guajava L.) fruit during cold storage. Scientia Hort. 144: 172-178.
Imahori, Y., Takemura, M. & Bai, J. 2008. Chilling-induced oxidative stress
and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 49: 54-60.
Kulpinsky, P., Nishimura, S.I. &
Tokura, S. 1997. Preparation and characterization of functionalized chitosan
fibers. Adv. Chitin Sci. 2: 334-338.
Lafontaine,
P.J. & Benhamou, N. 1996. Chitosan treatment: An emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxys-porum f. sp.
radicis-lycopersici. Biocontrol Sci. Technol. 6: 11-124.
Lang, G. & Clausen,
T. 1989. The use of chitosan in
cosmetics. In Chitin and Chitosan. Sources, Chemistry, Biochemistry. Physical Properties
and Applications, edited by Skjak- Braek, G., Anthosen, T. & Stanford,
P.A. London: Elsevier Applied Science. pp. 139-147.
Liu, J., Tian, S.P., Meng, X.H. & Xu, Y. 2007.
Control effects of chitosan on postharvest diseases and physiological response
of tomato fruit. Postharvest Biol. Technol. 44: 300-306.
Liu, X.D., Nishi, N., Tokura, S. &
Sakari, N. 2001. Chitosan coated cotton fiber: Preparation
and physical properties. Carbohydr. Polym. 44(3): 233-238.
Makino, Y. & Hirata,
T. 1997. Modified atmosphere packaging of fresh produce
with a biodegradable laminate chitosan-cellulose and polycaprolactone. Postharvest Biol. Technol. 10(3):
247-254.
Maqbool, M., Ali, A., Alderson, P.G., Zahid, N. & Siddiqui, Y. 2011. Effect of a novel edible composite coating based on gum
arabic and chitosan on biochemical and physiological
responses of banana fruits during cold storage. J. Agric. Food Chem. 59: 5474-5482.
Nakano, Y. & Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
Nishimura, Y. 1997. Physiological effects of chitosan
administered for long period. Food Style 21: 50-52.
Nukuntornprakit, O., Chanjirakul, K. & Doorn, W.G.V. 2015. Chilling
injury in pineapple fruit: Fatty acid composition and
antioxidant metabolism. Postharvest Biol. Technol. 99: 20-26.
Pennisi,
E. 1992. Sealed in plastic edible film. Sci. News 141: 12-13.
Perdones, A., Sánchez-González,
L., Chiralt, A. & Vargas,
M. 2012. Effect of chitosan-lemon essential oil coatings on
storage-keeping quality of strawberry. Postharvest Biol. Technol. 70: 32-41.
Pushkala, R., Raghuram,
P.K. & Srividya,
N.
2013. Chitosan based powder coatin technique to enhance phytochemicals and shelf life
quality of radish shreds. Postharvest Biol. Technol. 86: 402-408.
Qian, C., He, Z., Zhao, Y., Mi, H., Chen, X. & Mao, L. 2012. Maturity-dependent chilling tolerance regulated by
the antioxidative capacity in postharvest cucumber (Cucumis sativus L.) fruits. J.
Sci. Food Agric. 93: 626-633.
Ren, H.,
Endo, H. & Hayashi, T. 2001. Antioxidative and
antimutagenic activities and polyphenol content of pesticide-free and
organically cultivated green vegetable using water-soluble chitosan as a soil
modifier and leaf surface spray. J. Sci.
Food Agric. 81(15): 1426-1432.
Roller,
S. & Covill, N. 1999. The
antifungal properties of chitosan in laboratory media in apple juice. Int. J. Food Microbiol. 47(1-2): 67-77.
Romanazzi, G., Feliziani,
E., Santini, M. & Landi,
L.
2013. Effectiveness
of postharvest treatment with chitosan and
other resistance inducers in the control of storage decay of strawberry. Postharvest Biol. Technol. 75: 4-27.
Sala, J.M. & Lafuente,
M.T. 2004. Antioxidant enzymes activities and rindstaining in ‘Navelina’ oranges as affected by storage relative
humidity and ethylene conditioning. Postharvest Biol. Technol. 3: 277-285.
Sapers, G.M. 1992. Chitosan enhances
control of enzymatic browning in apple and pear juice by filtration. J. Food Prot. 57(5): 1192-1193.
Shahidi, F., Kamil, J.K.,
Jeon, Y.J. & Kim, S.K. 2002. Antioxidant
role of chitosan in a cooked cod (Gadus morhua)
model system. J. Food Lipids 9(1): 57-64.
Tan, C.K., Ali, Z.M. & Zainal, Z. 2012. Changes
in ethylene production, carbohydrase activity and antioxidant status in pepper fruits
during ripening. Scientia Hort. 142: 23-31.
Terry, L.A. & Joyce, D.C. 2004. Elicitors of induced disease
resistance in postharvest horticultural crops: A brief review. Postharvest
Biol. Technol. 32: 1-13.
Uchida, Y., Lzume, M. & Ohtakara, A. 1989. Preparation
of chitosan oligomers with purified chitosanase and its application. In Chitin and Chitosan: Sources, Chemistry,
Biochemistry, Physical Properties and Applications, edited by Skjak-Brak, G.,
Anthonsen, T. & Sandford, P.A. London: Elsevier Applied Science. pp. 373-382.
Wang, S.Y. & Gao, H. 2013. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and
postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Sci. Technol. 52: 71-79.
Wang, B., Wang, J., Liang, H., Yi, J., Zhang, J., Lin, L., Wu, Y., Feng, X., Cao, J. & Jiang, W. 2008. Reduced chilling injury in mango fruit by
2,4-dichlorophenoxyacetic acid and the antioxidant response. Postharvest Biol. Technol. 48: 172-181.
Xu, M., Dong, J., Zhang, M., Xu, X. & Sun, L. 2012. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of
loquat fruit during postharvest storage. Postharvest Biol. Technol. 65: 5-12.
Xu, S., Chen, X. & Sun,
D.W. 2001. Preservation of kiwifruit coated with edible film at ambient
temperature. J. Food Engineering 50:
211-216.
Yang, H., Wu, F. & Cheng, J. 2011. Reduced
chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 127: 1237-1242.
Zeng, K., Deng, Y., Ming, J. & Deng, L. 2010. Induction
of disease resistance and ROS metabolism in navel orange by
chitosan. Scientia Horti. 126: 223-228.
Zhang, Y., Zhang, M. & Yang, H. 2015. Postharvest
chitosan-salicylic acid application alleviates
chilling injury and preserves cucumber fruit quality during cold storage. Food Chem. 174: 558-563.
Zhang, Z., Nakano, K. & Maezawa, S. 2009. Comparison of the
antioxidant enzymes of broccoli after cold or heat shock treatment at different storage temperatures. Postharvest Biol.
Technol. 54: 101-105.
*Pengarang untuk surat-menyurat:
azhane_ahmad@yahoo.com.my