Sains Malaysiana 47(5)(2018): 1045–1050
http://dx.doi.org/10.17576/jsm-2018-4705-22
Assessing Diet of the
Rufous-Winged Philentoma (Philentoma pyrhoptera) in Lowland Tropical Forest using
Next-Generation Sequencing
(Penilaian Diet Filentoma
Sayap Merah (Philentoma pyrhoptera) di Hutan Tropika Tanah Rendah
menggunakan Penjujukan Generasi Seterusnya)
MOHAMMAD SAIFUL MANSOR1*, SHUKOR MD. NOR1 & ROSLI RAMLI2
1School of
Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute of
Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Federal
Territory, Malaysia
Diserahkan: 15 September 2017/Diterima: 19 Disember 2017
ABSTRACT
Dietary study provides
understanding in predator-prey relationships, yet diet of tropical
forest birds is poorly understood. In this study, a non-invasive
method, next-generation sequencing (Illumina MiSeq
platform) was used to identify prey in the faecal
samples of the Rufous-winged Philentoma
(Philentoma pyrhoptera).
Dietary samples were collected in lowland tropical forest of central
Peninsular Malaysia. A general invertebrate primer pair was used
for the first time to assess diet of tropical birds. The USEARCH was used to cluster the
COI
mtDNA sequences
into Operational Taxonomic Unit (OTU). OTU sequences
were aligned and queried through the GenBank
or Biodiversity of Life Database (BOLD). We identified 26 distinct
arthropod taxa from 31 OTUs. Of all OTUs,
there was three that could be identified up to species level,
20 to genus level, three to family level and five could not assigned
to any taxa (the BLAST
hits were poor). All sequences were identified to
class Insecta belonging to 18 families from four orders, where
Lepidoptera representing major insect order consumed by study
bird species. This non-invasive molecular approach provides a
practical and rapid technique to understand of how energy flows
across ecosystems. This technique could be very useful to screen
for possible particular pest insects consumed by insectivores
(e.g. birds and bats) in crop plantation. A comprehensive arthropod
studies and local reference sequen
Keywords: Dietary
ecology; MiSeq; next-generation sequencing (NGS); Philentoma pyrhoptera; tropical birds
ABSTRAK
Kajian diet memberi pemahaman
tentang hubungan
antara pemangsa-mangsa, namun diet burung di hutan tropika kurang
difahami. Dalam kajian ini,
satu kaedah
yang tidak invasif, penjujukan generasi akan datang
(platform Illumina MiSeq) digunakan
untuk mengenal
pasti mangsa dalam
sampel najis
Filentoma Sayap Merah (Philentoma pyrhoptera). Sampel makanan
diambil di hutan tropika tanah pamah
di Semenanjung Malaysia. Set
primer umum untuk invertebrata
digunakan pertama
kalinya untuk menilai
diet burung tropika.
Pautan USEARCH
digunakan untuk
mengkelompok jujukan
mtDNA COI kepada Unit Operasi Taksonomi (OTU). Jujukan OTU
telah disunting menggunakan perisian BioEdit dan ditentukan
menerusi Pangkalan
Data GenBank atau Biodiversity of
Life Database (BOLD). Kami mengenal
pasti 26 taksonomi
arthropoda yang unik daripada 31 OTUs. Daripada semua OTUs,
terdapat tiga
yang boleh dikenal pasti
hingga ke
tahap spesies, 20 hingga genus, tiga hingga famili dan
lima tidak dapat ditaksirkan (kadar BLAST yang
rendah). Semua
jujukan dikenal pasti sebagai kelas
Insecta yang terdiri
daripada 18 famili daripada empat order dengan Lepidoptera mewakili
order serangga yang utama
dimakan oleh spesies
burung kajian.
Pendekatan
molekul yang tidak invasif ini menyediakan
teknik yang praktikal
dan cepat untuk
memahami bagaimana
tenaga mengalir merentasi ekosistem.
Teknik ini juga sangat berguna untuk melihat
kemungkinan serangga
perosak yang tertentu dimakan oleh insektivor
(contohnya, burung
dan kelawar) di ladang tanaman. Kajian artropoda yang komprehensif
dan jujukan rujukan
tempatan perlu
ditambah ke pangkalan
data untuk meningkatkan
peratusan jujukan yang boleh dikenal pasti.
Kata kunci: Burung tropika; ekologi pemakanan; MiSeq; penjujukan generasi akan datang (NGS); Philentoma pyrhoptera
RUJUKAN
Baxter,
C.V., Fausch, K.D. & Carl Saunders,
W. 2005. Tangled
webs: Reciprocal flows of invertebrate prey link streams and riparian
zones. Freshwater Biology 50: 201-220.
Borghesio, L.
& Laiolo, P. 2004. Seasonal
foraging ecology in a forest avifauna of northern Kenya. Journal of
Tropical Ecology 20(2): 145-155.
Brown,
D.S., Jarman, S.N. & Symondson, W.O.C. 2012. Pyrosequencing of prey DNA in reptile faeces:
Analysis of earthworm consumption by slow worms. Molecular Ecology Resources 12: 259-266.
Chua,
L.S.L. & Saw, L.G. 2006. Plants of
Krau. Kuala Lumpur: Forest Research Institute
Malaysia.
Clare, E.L., Symondson, W.O., Broders,
H., Fabianek, F., Fraser, E.E., MacKenzie, A., Boughen, A., Hamilton,
R., Willis, C.K., Martinez-Nuñez, F. & Menzies, A.K.
2014. The diet of Myotis lucifugus across Canada: Assessing foraging
quality and diet variability. Molecular Ecology 23: 3618–3632.
Clare,
E.L., Barber, B.R., Sweeney, B.W., Hebert, P.D.N. & Fenton,
M.B. 2011. Eating local: Influences of habitat on the diet of little brown
bats (Myotis lucifugus).
Molecular Ecology 20: 1772-1780.
Clare,
E.L., Fraser, E.E., Braid, H.E., Fenton, M.B. & Hebert, P.D. 2009. Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular
approach to detect arthropod prey. Molecular Ecology 18: 2532-2542.
Clark,
D.B. 1996. Abolishing virginity. Journal of
Tropical Ecology 12(5): 735-739.
Edgar,
R.C. 2013. UPARSE: Highly accurate OTU sequences from
microbial amplicon reads. Nature Methods 10: 996-998.
Emlen,
J.M. 1966. The role of time and energy in food preference. American Naturalist 100: 611-617.
Hope,
P.R., Bohmann, K., Gilbert, M.T., Zepeda-Mendoza,
M.L., Razgour, O. & Jones, G. 2014. Second
generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri(Chiroptera, Vespertilionidae) in
winter. Frontiers in Zoology 11(1): 39.
Jedlicka,
J.A., Sharma, A.M. & Almeida, R.P.P. 2013. Molecular tools
reveal diets of insectivorous birds from predator fecal matter. Conservation
Genetic Resources 5: 879-885.
King,
R.A., Read, D.S., Traugott, M. & Symondson,
W.O.C. 2008. Molecular analysis of predation: A review of best
practice for DNA-based approaches. Molecular Ecology 17:
947- 963.
King,
R.A., Symondson, W.O.C. & Thomas, R.J. 2015. Molecular analysis of faecal samples
from birds to identify potential crop pests and useful biocontrol
agents in natural areas. Bulletin of Entomological Research
105(3): 261-272.
Li, D., Ding,
Y., Yuan, Y., Lloyd, H. & Zhang, Z. 2014. Female tidal mudflat
crabs represent a critical food resource for migratory Red-crowned
Cranes in the Yellow River Delta, China. Bird Conservation
International 24: 416-428.
MacArthur,
R.H. & Pianka, E.R. 1966. On the optimal use of a patchy environment. American
Naturalist 100: 603-609.
Mansor,
M.S. & Ramli, R. 2017. Niche separation in flycatcher-like species in the lowland
rainforests of Malaysia. Behavioural Processes 140: 121-126.
Mansor,
M.S. & Sah, S.A.M. 2012. The influence of habitat structure on bird species composition in
lowland Malaysian rain forests. Tropical Life Science Research 23(1):
1-14.
Mäntylä,
E., Klemola, T. & Laaksonen,
T. 2011. Birds help plants: A meta-analysis of top-down
trophic cascades caused by avian predators. Oecologia 165: 143-151.
Naoki,
K. 2007. Arthropod resource partitioning omnivorous tanagers
(Tangara spp.) in western Ecuador. Auk 124: 197- 209.
Pompanon, F., Deagle, B.E., Symondson, W.O., Brown, D.S., Jarman, S.N. & Taberlet, P.
2012. Who is eating what: Diet assessment using next generation sequencing. Molecular Ecology 21: 1931-1950.
Ratnasingham,
S. & Hebert, P.D.N. 2007. BOLD: The barcode of life data
system (www.barcodinglife.org). Molecular Ecology Notes 7: 355-364.
Razgour,
O., Clare, E.L., Zeale, M.R., Hanmer,
J., Schnell, I.B., Rasmussen, M., Gilbert, T.P. & Jones, G. 2011. High-throughput sequencing offers insight into mechanisms of resource
partitioning in cryptic bat species. Ecology and Evolution 1(4):
556-570.
Razo-González,
M., Castaño-Meneses, G., Callejas-Chavero,
A., Pérez-Velázquez, D. & Palacios-Vargas, J.G. 2014. Temporal variations of soil arthropods community structure in El Pedregal de San Ángel Ecological
Reserve, Mexico City, Mexico. Applied Soil Ecology 83:
88-94.
Salinas-Ramos,
V.B., Montalvo, L.G.H., León-Regagnon, V., Arrizabalaga-Escudero, A. & Clare, E.L. 2015. Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular
Ecology 24(20): 5296-5307.
Schmitz,
O.J., Hawlena, D. & Trussell,
G.C. 2010. Predator control of ecosystem
nutrient dynamics. Ecology Letters 13: 1199-1209.
Sherry,
T.W., Johnson, M.D., Williams, K.A., Kaban, J.D.,
McAvoy, C.K., Hallauer, A.M., Rainey, S. & Xu, S.
2016. Dietary opportunism, resource partitioning, and consumption of coffee berry
borers by five species of migratory wood warblers (Parulidae)
wintering in Jamaican shade coffee plantations. Journal of Field Ornithology 87(3): 273-292.
Sint,
D., Raso, L. & Traugott,
M. 2012. Advances in multiplex PCR: Balancing primer
efficiencies and improving detection success. Methods in Ecology and
Evolution 3: 898-905.
Terraube,
J., Arroyo, B., Madders, M. & Mougeot, F. 2011. Diet specialisation and foraging efficiency under
fluctuating vole abundance: A comparison between generalist and specialist
avian predators. Oikos 120(2): 234-244.
Vesterinen,
E.J., Ruokolainen, L., Wahlberg, N., Peña, C., Roslin, T., Laine, V.N., Vasko,
V., Sääksjärvi, I.E., Norrdahl,
K. & Lilley, T.M. 2016. What you need is what you eat?
Prey selection by the bat Myotis daubentonii. Molecular Ecology 25(7): 1581-1594.
Wells,
D.R. 2007. The Birds of the Thai-Malay
Peninsula. Vol. 2. The
Passerine. Christopher Helm, London, U.K.
Wildlife
Act. 2010. Laws of Malaysia Act 716: Wildlife Conservation Act 2010. Kuala
Lumpur: Percetakan Nasional Malaysia Berhad.
Wong,
C.K., Chiu, M.C., Sun, Y.H., Hong, S.Y. & Kuo,
M.H. 2015.
Using molecular scatology to identify aquatic
and terrestrial prey in the diet of a riparian predator, the plumbeous
water redstart Phoenicurus
fuliginosa. Bird Study 62(3): 1-9.
Yong,
D.L., Qie, L., Sodhi, N.S., Koh, L.P., Peh, K.S., Lee, T.M., Lim,
H.C. & Lim, S.L.H. 2011. Do insectivorous bird communities
decline on land-bridge forest islands in Peninsular Malaysia?
Journal of Tropical Ecology 27(1): 1-4.
*Pengarang untuk surat-menyurat; email: msaifulmansor@ukm.edu.my