Sains Malaysiana 47(5)(2018): 903–908
http://dx.doi.org/10.17576/jsm-2018-4705-05
Isolation and Photophysical Properties of Di- and Tri-substituted Natural Anthraquinones from Malaysian Morinda citrifolia
(Pengasingan
dan Sifat
Fotofizikal Antraquinon Semula Jadi Tertukarganti-Di
dan Tri daripada
Morinda citrifoliadi
Malaysia)
NABILA ELYANA ADNAN, NUR ATIQAH MOHD NASUHA, ZANARIAH ABDULLAH, YEUN-MUN CHOO*
& HAIRUL ANUAR TAJUDDIN
Chemistry
Department, University of Malaya, Jalan Universiti, 50603 Wilayah Persekutuan, Kuala Lumpur, Malaysia
Diserahkan: 21 Ogos 2017/Diterima: 5 Disember 2017
ABSTRACT
Five di- and
tri-substituted natural anthraquinones, i.e. nordamnacanthal (1), damnacanthal (2), rubiadin (3),
1-methoxy-2-methyl-3-hydroxyanthraquinone (4) and
1-hydroxy-3-methoxyanthraquinone (5) were subjected to photophysical studies. The results indicated that steric
hindrance and intramolecular hydrogen bonding are important factors that affect
absorption and emission spectral of these natural anthraquinones.
Besides that, emission properties were significantly enhanced with formation of
intramolecular hydrogen bonding in 1,3-dihydroxy-2-aldehyde
tri-substituted anthraquinone 1. This gave
rise to formation of two additional quasi aromatic rings extending the
π-conjugation system in the anthraquinone structure.
Keywords: Absorption
spectral; anthraquinone; emission spectral;
intramolecular hydrogen bonding; photophysical properties
ABSTRAK
Lima antraquinon semula jadi, iaitu nordamnacanthal
(1), damnacanthal (2),
rubiadin (3), 1-metoksi-2-metil-3-hidroksiantraquinon (4) dan 1-hidroksi-3-metoksiantraquinon (5) digunakan
dalam kajian
sifat fotofizikal. Keputusan
kajian menunjukkan bahawa penghalang sterik dan ikatan
hidrogen intramolekul
adalah faktor penting
yang mempengaruhi spektrum
penyerapan dan pelepasan antraquinon semula jadi. Selain itu, sifat
fotofizikal pemancaran
antraquinon 1 tertukarganti-tri
1,3-dihidroksi-2-aldehid dipertingkatkan
dengan pembentukan
ikatan hidrogen intramolekul. Pembentukan ikatan hidrogen
intramolekul ini
membolehkan pembentukan dua gelang aromatik
kuasi tambahan
dan memanjangkan sistem konjugasi-π dalam struktur antraquinon.
Kata kunci: Antraquinon;
ikatan hidrogen
intramolekul; sifat fotofizikal; spektra pelepasan spektra penyerapan
RUJUKAN
Akhtar, M.N., Zareen, S., Yeap, S.K., Ho, W.Y., Lo, K.M., Hasan, A. & Alitheen, N.B. 2013. Total synthesis, cytotoxic effects of Damnacanthal, Nordamnacanthal and related anthraquinone analogues. Molecules 18: 10042-10055.
Allen, N.S., Pullen, G., Shah, M., Edge, M., Holdsworth,
D., Weddell, I. & Catalina, F. 1995. Photochemistry and photoinitiator properties of 2-substituted anthraquinones 1. Absorption and
luminescence characteristics. J. Photochem. Photobio. A: Chem. 91: 73-79.
Anouar, E.L., Osman, C.P., Weber, J.F.F. & Ismail, N.H. 2014. UV/Visible spectra of a series of natural and synthesised anthraquinones: Experimental and quantum chemical
approaches. SpringerPlus 3: 233.
Diaz A.N. 1991. Analytical applications of 1,10-anthraquinones:
A review. Talanta 38: 571-588.
Diaz, A.N. 1990. Absorption and emission spectroscopy and
photochemistry of 1,10- anthraquinone derivatives: a review. J. Photochem. Photobio. A: Chem. 53: 141-167.
Flom, S.R. & Barbara, P.F. 1985. Proton
transfer and hydrogen bonding in the internal conversion of S1 anthraquinones. J. Phys. Chem. 89: 4489-4494.
Gordon,
P.F. & Gregory, P. 1983. Organic Chemistry in Colour. Heidelberg: Springer Verlag.
Kamiya,
K., Hamabe, W., Tokuyama, S., Hirano, K., Satake, T., Kumamoto-Yonezawa,
Y., Yoshida, Y. & Mizushina, Y. 2010. Inhibitory effect of anthraquinones isolated from the
Noni (Morinda citrifolia)
root on animal A-, B- and Y-families of DNA polymerases and human cancer cell
proliferation. Food Chemistry 188: 725-730.
Lakowicz,
J.R. 2006. Principles of Fluorescence
Spectroscopy. Baltimore: Springer.
Langdon-Jones,
E.E. & Pope, S.J.A. 2014. The coordination chemistry of
substituted anthraquinones: Developments and
applications. Coordination Chem. Rev. 269: 32-53.
Loonjang,
K., Duangjinda, D., Phongpaichit,
S., Sawangjaroen, N., Rattanaburi,
S. & Mahabusarakam, W. 2015. A new anthraquinone from Morinda ellipticaRidl. Nat. Prod. Res. 29: 1833-1838.
Madje,
B.R., Shelke, K.F., Sapkal,
S.B., Kakade, G.K. & Shingare,
M.S. 2010. An efficient onepot synthesis of anthraquinone derivatives catalyzed by
alum in aqueous media. Green Chem. Lett. Rev. 3: 269-273.
Nur Atiqah, M.N. & Choo, Y.M. 2016. A new flavone from Malaysia Borneo Marsdenia tinctoria. Nat. Prod. Res. 30(13):
1532-1536.
Peters,
R.H. & Sumner, H.H. 1953. Spectra of anthraquinone derivatives. J. Chem. Soc. 0:
2101-2110.
Puenner,
F., Schieven, J. & Hilt, G. 2013. Synthesis of fluorenone and anthraquinone derivatives from aryl- and aroyl-substituted propiolates. Org. Lett. 18: 4888-4891.
Seidel,
N., Hahn, T., Liebing, S., Seichter,
W., Kortus, J. & Weber, E. 2013. Synthesis and properties of new 9, 10-anthraquinone derived
compounds for molecular electronics. New J. Chem. 37: 601-610.
Weisło,
A., Niedziałkowski, P., Wnuk,
E., Zarzeczan´ska, D. & Ossowski,
T. 2013. Influence of different amino substituents in
position 1 and 4 on spectroscopic and acid base properties of 9,
10-anthraquinone moiety. Spectrochim. Acta Mol. Biomol. Spectrosc.108: 82-88.
Weisstuch,
J. & Testa, A.C. 1970. Fluorescence study of 2-(N,N-Dimethylamino)pyridine
and related molecules. J. Phys. Chem. 74: 2299-2302.
Wu,
T.S., Lin, D.M., Shi, L.S., Damu, A.G., Kuo, P.C. & Kuo, Y.H. 2003. Cytotoxic anthraquinones from the stems
of Rubia wallichiana DECNE. Chem. Pharm. Bull. 51: 948-950.
Xu,
R., Ye, Y. & Zhao, W. 2010. Introduction
to Natural Products Chemistry. Boca Raton: CRC Press.
Yap,
A.C., Chan, K.G., Sim, K.S. & Choo, Y.M. 2016. A new oxolane from Enterobacter
cloacae. Nat. Prod. Res. 30: 783-788.
Yap,
A.C., Teoh, W.Y., Chan, K.G., Sim, K.S. & Choo Y.M. 2015. A new oxathiolane from Enterobacter
cloacae. Nat. Prod. Res. 29: 722-726.
*Pengarang untuk surat-menyurat; email: ymchoo@um.edu.my