Sains Malaysiana 47(5)(2018): 893–901
http://dx.doi.org/10.17576/jsm-2018-4705-04
Penentuan Kepekatan
Radionuklid Tabii dan Indeks Bahaya Radiologi akibat Penggunaan Condisoil®
ke atas Penanaman Hibiscus cannabinus (Kenaf)
(Determination of Natural
Radionuclides Concentrations and Radiological Hazard Index due to
Application of Condisoil® on Hibiscus cannabinus (Kenaf)
Cultivation)
AZNAN FAZLI ISMAIL1,2*, KHAIRIAH ROSLI2, WAN MOHD RAZI IDRIS3 & SAHIBIN ABD. RAHIM3
1Pusat Penyelidikan
Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Program Sains Nuklear,
Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Pusat Pengajian Sains
Sekitaran & Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 5
September 2017/Diterima: 27 November 2017
ABSTRAK
Kajian ini bertujuan
menentukan kepekatan aktiviti radionuklid tabii (226Ra, 228Ra
dan 40K) dalam tanah, air dan tumbuhan serta faktor
pemindahan daripada tanah kepada tumbuhan dan indeks bahaya radiologi akibat
penggunaan Condisoil®. Sebanyak 4 sampel tanah, 14 sampel air dan 4 sampel
tumbuhan telah dianalisis menggunakan sistem spektometri sinar gama. Keputusan
kajian mendapati julat kepekatan aktiviti 226Ra, 228Ra
dan 40K dalam sampel tanah yang menggunakan Condsoil®
masing-masing adalah 13.8 - 17.6, 15.7 - 21.0 dan 44.5 - 57.7 Bq kg-1.
Julat kepekatan aktiviti 226Ra, 228Ra
dan 40K dalam sampel tumbuhan pula masing-masing adalah 5.0 -
18.5, 0.1 - 1.5 dan 42.7 - 321.8 Bq kg-1.
Bagi sampel air, julat kepekatan aktiviti bagi radionuklid 226Ra, 228Ra
dan 40K masing - masing adalah 0.3 - 0.9, 0.3 - 3.9 dan 1.4 -
11.6 Bq L-1. Julat faktor pemindahan radionuklid 226Ra, 228Ra
dan 40K daripada tanah ke tumbuhan masing-masing adalah 0.42
- 0.71, 0.01 - 0.08 dan 0.85 - 5.34. Penilaian bahaya radiologi mendapati
indeks kesetaraan radium berada di bawah nilai had yang dicadangkan iaitu 370
Bq kg-1. Sehubungan dengan itu, kajian ini mendapati
penggunaan Condisoil® sebagai bahan penambahbaikan tanah tidak menyebabkan
pertambahan radionuklid tabii ke dalam alam sekitar serta tidak mendatangkan
risiko bahaya radiologi kepada manusia.
Kata kunci: Bahaya
radiologi; Condisoil®; radionuklid tabii; sisa industri
ABSTRACT
The objectives of
this study were to determine the natural radioactivity concentrations (226Ra, 228Ra
and 40K) in soil, water and plant due to the application of
Condisoil®, soil-to-plant transfer factor and radiological hazard index due to
the application of Condisoil®. A total of 4 soils, 14 waters and 4 plants
samples have been analysed using gamma spectrometry system. The results showed
that the activity concentrations of 226Ra, 228Ra
and 40K in soils treated with Condisoil® ranged from 13.8 -
17.6, 15.7 - 21.0 and 44.5 - 57.7 Bq kg-1,
respectively. The activity concentrations of 226Ra, 228Ra
and 40K in plants ranged from 5.0 - 18.5, 0.1 - 1.5 and 42.7
- 321.8 Bq kg-1, respectively. In addition to
that, the activity concentrations of 226Ra, 228Ra
and 40K in water was in the ranged of 0.3 - 0.9, 0.3 - 3.9
and 1.4 - 11.6 Bq L-1, respectively. The
soil-to-plant transfer factor for 226Ra, 228Ra
and 40K were in the ranged of 0.42 - 0.71, 0.01 - 0.08 and
0.85 - 5.34, respectively. The radiological hazard assessment found that the
radium equivalent index was lower than the recommended limit of 370 Bq kg-1.
Therefore, this study concludes that the application of Condisoil® as soil
amelioration does not contribute to the accumulation of natural radionuclide in
the environment as well as does not pose a significant radiological risk to
human.
Keywords: Condisoil®; industrial residue; natural radionuclides;
radiological hazard
RUJUKAN
Ali, A.A., Heiyam, N.H. & Zahrah, B.M. 2016. Natural
radioactivity levels in some vegetables and fruits commonly used in Najaf
Governorate, Iraq. Journal of Bioenergy and Food Science 3: 113-123.
Al-Areqi, W.M., Majid, A.A. & Sarmani, S. 2014. Thorium,
uranium and rare earth elements content in lanthanide concentrate (LC) andwater
leach purification (WLP) residue of Lynas advanced materials plant (LAMP). AIP
Conference Proceedings 1584, American Institute of Physics, Melville, NY.
pp. 93-96.
Almayahi, B., Tajuddin, A. & Jaafar, M. 2014. Measurement of
natural radionuclides in human teeth and animal bones as markers of radiation
exposure from soil in the Northern Malaysian peninsula. Radiation Physics
and Chemistry 97: 55-67.
Almayahi, B., Tajuddin, A. & Jaafar, M. 2012. Radiation hazard
indices of soil and water samples in Northern Malaysian Peninsula. Applied
Radiation and Isotopes 70: 2652- 2660.
Alsaffar, M.S., Jaafar, M.S., Kabir, N.A. & Ahmad, N. 2015.
Distribution of 226Ra, 232Th
and 40K in rice plant components and physico-chemical effects
of soil on their transportation to grains. Radiation Research and Applied
Sciences 8: 300-310.
Alnassar, N.A., Jaafar, M.S. & Kabir, N.A. 2017. Determination
of concentraions of natural radionuclife in soil dan water in non-cultivated
sites in Seberang Perai, Malaysia. IOSR-JAP 9(2): 27-35.
Alzubaidi, G., Fauziah, B.S.H. & Rahman, I.A. 2016. Assessment
of natural radioactivity levels and radiation hazards in agricultural and
virgin soil in the State of Kedah, North of Malaysia. The Scientific World
Journal 2016: Article ID 6178103.
Aswood, M.S., Jaafar, M.S. & Sabar, B. 2013. Assessment of
radionuclide transfer from soil to vegetables in farms from Cameron Highlands
and Penang, (Malaysia) using neutron activation analysis. Applied Physics
Research 5(5): 85-92.
Asaduzzaman, K., Khandaker, M.U., Amin, Y.M. & Mahat, R. 2015.
Uptake and distribution of natural radioactivity in rice from soil in north and
west part of Peninsular Malaysia for estimation of ingestion dose to man. Annals
of Nuclear Energy 76: 85-93.
Asaduzzaman, K., Mannan, F., Khandaker, M.U., Farook, M.S., Elkezza,
A., Amin, Y.M. & Sharma, S. 2015. Natural radioactivity levels in
commercialized bottled drinking water and their radiological quality
assessment. Desalination and Water Treatment 57: 11999-12009.
Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari,
I. 2009. Hazard radiologi radionuklid tabii dalam simen Portland Semenanjung
Malaysia. Sains Malaysiana 38(3): 407-411.
Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari,
I. 2010. Penilaian risiko radiologi bahan binaan konkrit di Semenanjung
Malaysia. Sains Malaysiana 39(4): 607-613.
Beretka, J. &
Matthew, P.J. 1985. Natural radioactivity of Australian building materials,
industrial waste and by products. Health Physics 48: 87-95.
Carini, F. &
Bengtsson, G. 2001. Post-deposition transport of radionuclides in fruit. Journal
of Environmental Radioactivity 55(2-3): 215-236.
Gaffar, S., Ferdous,
M.J., Begum, A. & Ullah, S.M. 2014. Transfer of natural radionuclides from
soil to plants in North Western Parts of Dhaka. Malaysian Journal of Soil
Science 18: 61-64.
Greger, M. 2004.
Technical report TR-04-14: Uptake of nuclides by plants. SKB, Sweedish Nuclear
Fuel and Waste Management.
Hamzah, Z., Siti,
A.A.R. & Saat, A. 2011. Measurement of 226Ra, 228Ra and 40K in soil in
district of kuala krai using gamma spectrometry. Malaysian Journal of
Analytical Sciences 15(2): 159-166.
IAEA. 2013. Safety
report Series No. 78. Radiation Protection and Management of NORM Residues
in the Phosphate Industry. Vienna: IAEA.
IAEA. 2010. Technical
Report No. 472. Handbook of Parameter Values for the Prediction of
Radionuclide Transfer in Terrestrial and Freshwater Environment. Vienna:
IAEA.
IAEA. 1989. Technical
Report No. 295. Measurement of Radionuclides in Food and the Environment.
Vienna: IAEA.
Ismail, N.F. &
Ibrahim, N. 2016. Natural radioactivity in groundwater and soils in Johor,
Malaysia ARPN. Journal of Engineering and Applied Sciences 11(18):
10935-11039.
La Torre, F.P. &
Silari, M. 2015. Leaching of radionuclide from activated soil into groundwater. Environmental Radioactivity 143: 7-13.
Majid, A.A., Aznan,
F.I., Yasir, M.S., Redzuwan, Y. & Bahari, I. 2013. Radiological dose
assessment of naturally occurring radioactive materials in concrete building
materials. Radionalaytical Nuclear Chemistry 297: 277- 284.
Markkanen, M. 2001.
Challenges in harmonising controls on the radioactivity of building materials
within the European Union. The Science of the Total Environ 272: 3-7.
Masitah, A., Zaini, H.
& Saat, A. 2005. Determination of 226Ra, 228Ra and 40K in soil from
jengka-15 oil palm plantation. Journal of Analytical Sciences 9(1):
126-132.
Masitah, A., Zaini,
H., Ahmad, S., Muhamat, O., W. Mohamad, W.A.K. & M. Rafi, M.S. 2004. Level
of naturally occurring radioactive material, k-40 in oil palm’s cultivated
soil. Journal of Nuclear and Related Technologies 1(2): 1-11.
Michael, A.O.,
Onosohwo, B.U., Mayeen, U.K., Amin, Y.M. & Faruq, G. 2014. Radiological
study on newly developed composite corn advance lines in Malaysia. Physica
Scripta 89: 125002.
NEA-OECD. 1979. Exposure
to Radiation from Natural Radioactivity in Building Materials. Report by
NAE Group Expert, OECD: Paris.
Priharti, W. &
Supian, S. 2016. Radiological risk assessment from the intake of vegetables and
fruits in Malaysia. Malaysian Journal of Analytical Sciences 20(6):
1247-1253.
Pulhani, V.A.,
Dafauti, S. & Hegde, A.G. 2007. Leaching of uranium, radium and thorium
from vertisol by ground water. Radionalaytical Nuclear Chemistry 274:
341-343.
Raffaella, T.,
Ricardo, L. & Mario, D.S. 2015. Radionuclide transport in shallow
groundwater. Progress in Nuclear Energy 85: 277-290.
RIA. 2011. Radiological
Impact Assessmant of Lynas Advanced Materials Plant 2011: Executive
Summary, Rev. 4, November (2011).
Saeed, M.A., Siti,
S.Y., Hossain, I., Ahmed, R., Hewa, Y.A., Shahid, M. & Ramli, A.T. 2011.
Soil to rice transfer factor of the natural radionuclides in Malaysia. Romanian
Journal of Physics 57: 1414-1424.
SA-EPA. 2005. EPA
Guidelines: Composite Soil Sampling in Site Contamination Assessment and
Management. Government of South Australia.
Shyamal, R.C., Rezaul,
A., Rezaur, R.A.K.M. & Rashmi, S. 2013. Radioactivity concentrations in
soil and transfer factors of radionuclides from soil to grass and plants in the
Chittagong City of Bangladesh. Journal of Physical Science 24(1):
95-113.
Solehah, A.R., Yasir,
M.S. & Samat, S.B. 2016. Activity concentration, transfer factors and
resultant radiological risk of 226Ra, 232Th, and 40K in soil and some
vegetables consumed in Selangor, Malaysia. AIP Conference Proceedings 1784:
040016.
Tawalbeh, A.A., Samat,
S.B. & Yasir, M.S. 2013. Radionuclides level and its radiation hazard index
in some drinks consumed in the central zone of Malaysia. Sains Malaysiana 42(3):
319-323.
UNSCEAR. 2000. Exposures
from Natural Radiation Sources. United Nations Scientific Committee on the
Effects of Atomic Radiation. Report to General Assembly, With Annexes. United
Nations, New York.
UNSCEAR. 1982. Ionizing
Radiation: Sources and Biological Effects. United Nations Scientific
Committee on the Effects of Atomic Radiation. Report to the General Assembly,
with annexes. New York: United Nations.
US-EPA, 2002. EPA
QA/G-5S: Guidance on Choosing a Sampling Design for Environmental Data
Collection. U.S. Environmental Protection Agency, Washington D.C.
*Pengarang
untuk surat-menyurat; email: aznan@ukm.edu.my
|