Sains Malaysiana 47(8)(2018): 1665–1674

http://dx.doi.org/10.17576/jsm-2018-4708-05

 

Chemical Composition of a Mud Volcano LUSI and the Health Risk Involved based on the Air Quality Index that Occurred as a Result of Disastrous Gas Exploration Drilling Activities in Sidoarjo, Indonesia

(Komposisi Kimia daripada Gunung berapi LUSI dan Risiko Kesihatan yang Terlibat Berdasarkan Indeks Kualiti Udara Hasil daripada Aktiviti Penggerudian Eksplorasi Gas Bencana di Sidoarjo, Indonesia)

 

DEWI HIDAYATI12., ISMAIL B.S2., SHUHAIMI-OTHMAN M2. & NORELA SULAIMAN2*

 

1Biology Department, Mathematics and Natural Science Faculty, Institut Teknologi Sepuluh Nopember Surabaya (ITS), Indonesia

 

2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 3 Julai 2017/Diterima: 11 Mac 2018

 

ABSTRACT

LUSI (Lumpur“mud”-Sidoarjo) is the mud volcanic which was initiated by the failed gas drilling exploration activities carried out near an urban area. The evaluation of the LUSI mud volcanic emission and its dried mud effects on air pollution and human health was carried out from 2011 to 2012. The concentrations of particulate matter (PM2.5), hazardous gases (H2S, SO2, NO2), volatile organic compounds (VOC): Including total hydrocarbons (THC)), toluene (C6H5CH3) and benzene (C6H6) as well as heavy metals (Pb, Cr and Cd) were measured following standard methods. The results showed that the average concentration of PM2.5 ranged from 24.0-399.9 μg/m3, H2S: 1.53-2.92 ppm; SO2: 0.021-1.321 ppm and NO2: 0.007-0.076 ppm. The VOC included total hydrocarbons from 0.57-0.96 ppm, toluene 0.33-0.92 ppm and benzene 0.33-0.40 ppm. Furthermore, heavy metal concentrations were as follows: Pb 2.6-37.34 μg/m3; Cr 0.14-12.8 μg/m3 and Cd 0.78-4.16 μg/m3. LUSI contributed to increased air pollution primarily through H2S, SO2 and PM2.5. The Air Quality Index (AQI) of PM2.5 (164-217) and SO2 (235-291) showed that the air quality at the disaster area was 'very unhealthy'. Backward trajectories indicated that the wind direction may have had an impact on the air pollution load.

 

Keywords: Air quality index; heavy metals; VOC; volcano

 

ABSTRAK

LUSI (Lumpur “lumpur” -Sidoarjo) adalah bencana lumpur gunung berapi yang disebabkan oleh kegagalan aktiviti penggerudian gas yang terjadi berhampiran dengan kawasan bandar. Penilaian kesan pelepasan gas gunung berapi LUSI dan lumpur keringnya terhadap pencemaran udara dan kesihatan manusia ini telah dijalankan pada tahun 2011 hingga 2012. Kepekatan zarahan halus (PM2.5), gas berbahaya (H2S, SO2, NO2, VOC: jumlah hidrokarbon (THC)), toluena (C6H5CH3) dan benzena (C6H6) serta logam berat (Pb, Cr and Cd) diukur menggunakan metod piawaian. Keputusan menunjukkan purata kepekatan bagi PM2.5 antara 24.0-399.9 μg/m3, H2S: 1.53-2.92 ppm; SO2: 0.021-1.321 ppm dan NO2: 0.007-0.076 ppm. VOC termasuk jumlah hidrokarbon daripada 0.57-0.96 ppm, toluena 0.33-0.92 ppm dan benzena 0.33-0.40 ppm. Tambahan pula, kepekatan logam berat adalah seperti berikut: Pb 2.6-37.34 μg/m3; Cr 0.14-12.8 μg/m3 dan Cd 0.78-4.16 μg/m3. LUSI menyumbang kepada peningkatan pencemaran udara terutamanya H2S, SO2 dan PM2.5. Merujuk kepada Indeks Kualiti Udara (AQI) PM2.5 (164-217) dan SO2 (235-291) menggambarkan bahawa kualiti udara di kawasan bencana tersebut adalah 'sangat tidak sihat'. Trajektori udara kebelakang menunjukkan arah angin mungkin mempunyai kesan ke atas beban pencemaran udara.

 

Kata kunci: Gunung berapi; indeks kualiti udara; logam berat; VOC

RUJUKAN

ADB. 2006. Country Synthesis Report on Urban Quality Management: Indonesia. Philippines: The Asian Development Bank (ADB).

Anon. 2009. East Java Governor Regulation no. 10, Year 2009 for ambient air quality and stationary sources emissions in East Java Indonesia (Peraturan Gubernur Jawa Timur no. 10 tahun 2009 tentang baku mutu udara ambien dan emisi sumber tidak bergerak di Jawa Timur Indonesia).

Akesson, M. 2008. Mud volcano: A review. Master thesis, Lund University, Sweden (Unpublished).

ATSDR. 2008. Chromium Toxicity What Are the Standards and Regulations for Chromium Exposure? Agency for Toxic Substances and Disease Registry Atlanta, GA.

ATSDR. 2007a. Toxicological Profile for Lead. U.S. Agency for Toxic Substances and Disease Registry, U.S. Public Health Services, Department of Health and Human Services, Atlanta, GA.

ATSDR. 2007b. Toxicological Profile for Benzene. U.S. Agency for Toxic Substances and Disease Registry, U.S. Public Health Services, Department of Health and Human Services, Atlanta, GA.

ATSDR. 2006. Toxicological Profile for Hydrogen Sulfide. Agency for Toxic Substances and Disease Registry, U.S. Public Health Services, Department of Health and Human Services, Atlanta, GA.

ATSDR. 2000. Toxicological Profile for Toluene. Agency for Toxic Substances and Disease Registry, U.S. Public Health Services, Department of Health and Human Services, Atlanta, GA.

Bhambani, Y. & Singh, M. 1991. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men. Journal of Applied Physiology 71(5): 1872-1877.

Berner, R.A. 1971. Principles of Chemical Sedimentology. New York: Mc Graw Hill.

Brimblecombe, P. 1996. Air Composition and Chemistry. Cambridge: Cambridge University Press.

Brown, K.M. 1990. The nature and hydrogeological significance of mud diapirs and diatremes for accretionary prisms. Journal of Geophysical Research 95: 8969-8982.

Li, C.P., Qin, G., Shi, R.Z., Zhang, M.S. & Lv, J.Y. 2013. Ginsenoside Rg1 reduces toxicity of PM2.5 on human umbilical vein endothelial cells by upregulating intracellular antioxidative state. Environmental Toxicology and Pharmacology 35(1): 21-29.

Collins, J. & Lewis, D. 2000. Air Toxicology and Hydrogen Sulfide: Evaluation of Current California Air Quality Standards with Respect to Protection of California. Office of Environmental Health Hazard Assessment Children Epidemiology Section, California.

Creed, J.T., Martin, T.D. & O'Dell, J.W. 1994. USEPA Method 200.9, Revision 2.2 Determination of trace elements by stabilized temperature graphite furnace atomic absorption.

Centre for Remote Imaging, Sensing and Processing (CRISP). 2012. National University of Singapore. http://www.crisps. nus.edu.sg/coverages/EJmudflow. Accessed on April 5, 2014.

Centre for Remote Imaging, Sensing and Processing (CRISP). 2011. National University of Singapore. http://www.crisps. nus.edu.sg/coverages/EJmudflow/index20110809.html. Accessed on April 5, 2014.

Centre for Remote Imaging, Sensing and Processing (CRISP). 2010. National University of Singapore. http://www.crisp. nus.edu.sg/coverages/EJmudflow/index 20101117. html. Accessed on December 7, 2010.

Davies, R.J., Mathias, S.A., Swarbick, R.E. & Tingay, M.J. 2011. Probabilistic longevity estimate for the LUSI mud volcano, East Java. Journal of the Geological Society 168: 517-523.

Draxler, R.R. & Rolph, G.D. 2013. Hybrid single-particle lagrangian integrated trajectory (HYSPLIT) model. http:// ready.arl.noaa.gov/HYSPLIT.php. Accesed on June 5, 2013.

EPA Victoria. 2003. Rapid Bioassessment Methodology for Rivers and Streams. Guideline for Environmental Management. Australia: EPA Victoria. pp. 1-11.

Etiope, G., Caracausi, A., Favara, R., Italiano, F. & Baciu, C. 2002. Methane emission from the mud volcanoes of Sicily (Italy). Geophysical Research Letters 29(8): 1215.

Gokhale, S. 2009. Air Pollution Sampling and Analysis. Department of Civil Engineering, Indian Institute of Guwahati, Assam India.

Hasan, M.I. 2003. Kajian Korelasi Curah Hujan, Debit Sungai Brantas dan Anomali SML Nino 3,4 untuk Estimasi Ketersediaan Air Permukaan DAS Brantas Jawa Timur (Correlation of Rainfall, Discharge Brantas River and Anomalies SML Nino 3.4 to Estimate the Brantas River Basin Surface Water Availability in East Java). Skripsi. Department Geophysics and Meteorology, Institut Teknologi Pertanian Bogor, Indonesia.

Hawkins, T.W. & Holland, L.A. 2010. Synoptic and local weather condotions associated with PM2.5 concentration in Carlisle, Pennsylvania. Middle States Geographer 43: 72-84.

Hidayati, D., Sulaiman, N., Ismail, B.S., Shuhaimi Othman, M. & De Bellard, M.E. 2017. Evaluation of the effect of Sidoarjo mud on aquatic life using chromatophores and the microstructure of fish scales. Sains Malaysiana 46(3): 373-380.

Hidayati, D., Sulaiman, N., Ismail, B.S. & Shuhaimi-Othman, M. 2014. Impact of mud volcano lava to the aquatic life using the fish biological study case in lusi mud volcano Indonesia. Research Journal of Environmental Toxicology 8: 1-24.

Hidayati, D., Sulaiman, N., Ismail, B.S. & Shuhaimi- Othman, M. 2013. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination. AIP Conference Proceedings. 1571: 563-568. https://doi.org/10.1063/1.4858714.

Hosiokangas, J., Vallius, M., Ruuskanen, J., Mirme, A. & Pekkanen, J. 2004. Resuspended dust episodes as an urban air-quality problem in subarctic regions. Scandinavian Journal of Work, Environment & Health 2: 28-35.

Kono, N. 2003. Urban Environmental Management Capacity Assessment: Case Study of Jakarta and Surabaya. www.iges. or.jp/kitakyushu/ Successful%20Practices/Indicators4.pdf. Accesed on June 27, 2015.

Kurniawati, N.E. & Azizah, R. 2006. Pengaruh penggunaan cerobong asap model “water spons filter” (WSF) terhadap penurunan kadar SO2 pada industri tahu di Sukun Malang. Jurnal Lingkungan 3(1): 59-66.

Lindner, W., Posch, W., Wolfbeis, O.S. & Tritthart. 1983. Analysis of nitro-PAHs in diesel exhaust particulate extracts with multicolumn HPLC. Chromatographia 20(4): 213-218.

Lodhi, A., Ghauri, B., Rafiq Khan, M., Rahman, S. & Shafique, S. 2009. Particulate matter (PM2.5) concentration and source apportionment in Lahore. Journal of the Brazilian Chemical Society 20(10): 1811-1820.

Mazzini, A., Svensen, H., Akhmanov, G.G., Aloisi, G., Planke, S., Malthe Sorrensen, A. & Istadi, B. 2007. Triggering and dynamic evolution of the lusi mud volcano Indonesia. Earth and Planetary Science Letters 261(3-4): 375-388.

Milkov, A.V. 2005. Global distribution of mud volcanoes and their significance in petroleum exploration as a source of methane in the atmosphere and hydrosphere and as geohazard. Nato Science Series 51: 29-34.

NAAQS USEPA. 1990. National Ambient Air Quality Standards (NAAQS). Clean Air Act. United States Environmental Protection Agency. http://epa.gov/air/criteria.html. Accessed on October, 2011.

Niemann, H. & Boetius, A. 2010. Mud volcanoes. In Handbook of Hydrocarbon and Lipid Microbiology, edited by Timmis, K.N. Berlin Heidelberg: Springer-Verlag.

Oppenheimer, C., Francis, P. & Stix, J. 1998. Depletion rates of sulfur dioxide in tropospheric volcanic plumes. Geophysical Research Letters 25(14): 2671-2674.

Plumlee, G.S., Casadevall, T.J., Wibowo, H.T., Rosenbauer, R.J., Johnson, C.A., Breit, G.N., Lowers, H.A., Wolf, R.E., Hageman, P.L., Goldstein, H., Anthony, M.W., Berry, C.J., Fey, D.L., Meeker, G.P. & Morman, S.A. 2008. Preliminary Analytical Results for a Mud Sample Collected from the LUSI Mud Volcano, Sidoarjo, East Java, Indonesia. U.S. Geological Survey Open-File Report 2008.

PPSP. 2011. Program Percepatan Pembangunan Sanitasi Permukiman (Sanitation Development Acceleration Program Settlement). Buku Putih Sanitasi Kabupaten Sidoarjo. Tim Pelaksana Kelompok Kerja PPSP Kabupaten Sidoarjo (White Book Sanitation Sidoarjo. Working Group Executive Team PPSP District Sidoarjo).

Queensland EPA. 1997. Queensland Government, Environment Protection Agency. Air quality sampling manual. Produced by Department of Environment, The State of Queensland. ISBN 07242 6998 3.

Rolph, G.D. 2013. Real-time Environmental Applications and Display System (READY) Website (http://ready.arl.noaa. gov). NOAA Air Resources Laboratory, Silver Spring, MD.

Sher, E. 1998. Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control. Part II Global Aspect. London: Academic Press Limited.

SNI. 2005a. Standar Nasional Indonesia (National Standard of Indonesia), Emisi Gas Buang-Sumber tidak Bergerak-Bagian 5: Cara Uji Oksida-oksida Nirogen dengan Metode Phenol Disuphonic Acid (PDS) menggunakan Spectrofotometer (Exhaust Emissions - Stationary Sources - Part 5: Test Methods of Oxides Nirogen with Phenol Disuphonic Acid Method ( PDS) using Spectrophotometer). No. SNI 19- 7117.5.2005.

SNI. 2005b. Standar Nasional Indonesia (National Standard of Indonesia), Udara Ambien-Bagian 7: Cara Uji Kadar Sulfur Dioksida (SO2) dengan Metoda Pararosanilin menggunakan Spektrofotometer (Ambient Air - Part 7: Test Methods for Sulfur Dioxide (SO2) with Pararosanilin Method using a Spectrophotometer. No: SNI 19-7119.7.2005.

Stamatakis, M.G., Baltatzis, E.G. & Skounakis, S.B. 1987. Sulfate mineral for a mud volcano in the Katakolo area western Pelloponnesus Greece. American Mineralogist 72: 839-841.

Tai, A.P.K., Mickey, L.J. & Jacob, D.J. 2010. Correlation between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for sensitivity of PM2.5 to climate change. Atmospheric Environment 44: 3976-3984.

Textor, C., Graf, H.F. & Timmreck, C. 2003. Emissions from volcanoes. In Reeves Emissions of Atmospheric Trace Compounds, edited by Granier, C.P. & Artaxo, C.E. Dordrecht, Netherlands: Kluwer Academic Publisher.

Tiwari, S., Chate, D.M., Srivastava, A.K., Bisht, D.S. & Padmanabhamurty, B. 2012. Assessments of PM1, PM2.5 and PM10 concentrations in Delhi at different mean cycles. Geophysics 29: 125-141.

UNDAC. 2006. United Nation Disaster Assesment and Coordination, Environmental Assessment Hot Mud Flow East Java Indonesia. Joint UNEP/OCHA Environment Unit, 1-56, Final Technical Report, July 2006, Switzerland.

Uruioc, S., Mâu, S., Sinitean, A., Albulescu, M. & Popovici, H. 2011. Preliminary study of mud volcanoes in Banat (South- West Romania). Geo-Eco-Marina 17: 247-251.

USEPA. 1999. Nitrogen Oxides (NOx), Why and How They are Controlled United States Office of Air Quality EPA 456/F-99- 006R. Technical Bulletin Environmental Protection Planning and Standards November 1999 Agency.

USEPA. 2006. Air Quality Criteria for Lead (Final Report, 2006). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/144aF-bF, 2006.

Wailanduw, G. 2008. Kualiti bahan api petrol “premium”: Kajian kes di Surabaya (Mutu bahan bakar premium: Studi kasus di Surabaya). Jurnal Teknika 9(2): 104-109.

Williams, C.R. & Harrison, R.M. 1984. Cadmium in the atmosphere. Experentia 40(1): 29-36.

Yadav, R., Sahu, L.K., Jaaffrey, S.N.A. & Beig, G. 2014. Temporal variation of particulate matter (PM) and potential sources at an urban site of Udaipur in Western India. Aerosol and Air Quality Research 14(6): 1613-1629.

Zaenuddin, A., Badri, I., Padmawidjaja, T., Humaida, H. & Sutaningsih, E. 2010. Fenomena geologi semburan lumpur Sidoarjo (Geological phenomenon of Sidoarjo mudflow). Badan Geologi, Kementerian Energi dan Sumber Daya Mineral (Geology Agency, Ministry of Energy and Mineral Resources).

 

 

*Pengarang untuk surat-menyurat; email: vozela@ukm.edu.my

 

 

 

 

 

sebelumnya