Sains Malaysiana 47(8)(2018): 1913–1922
http://dx.doi.org/10.17576/jsm-2018-4708-33
XPS Study of Sulfur and Phosphorus
Compounds with Different Oxidation States
(Kajian XPS untuk
Sebatian Sulfur dan Fosforus yang Mempunyai Pengoksidaan yang Berbeza)
KIM S. SIOW1,2*, LEANNE BRITCHER1, SUNIL KUMAR1,3 & HANS J GRIESSER1,4
1Ian Wark Research
Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
2Institute of
Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
3Coatings Mantra Science
and Technology Consulting, 11 Beresina Place, Greenwith, Adelaide,
SA 5125, Australia
4Mawson Institute, University
of South Australia, Mawson Lakes, SA 5095, Australia
Diserahkan: 9 Februari
2018/Diterima: 14 Mac 2018
ABSTRACT
In this report, we demonstrate that
continuous improvement in XPS instruments and the calibration
standards as well as analysis with standard component-fitting procedures can be
used to determine the binding energies of compounds containing phosphorus and
sulfur of different oxidation states with higher confidence. Based on such
improved XPS analyses, the binding energies (BEs)
of S2p signals for sulfur of increasing oxidation state are determined to be
166-167.5 eV for S=O in dimethyl sulfoxide, 168.1 eV for S=O2 in
polysulfone, 168.4 eV for SO3 in
polystyrene sulfonate and 168.8 eV for SO4 in
chondroitin sulfate. The BEs of P2p signals show the following
values: 132.9 eV for PO3 in
triisopropyl phosphite, 133.3 eV for PO4 in
glycerol phosphate, 133.5 eV for PO4 in
sodium tripolyphosphate and 134.0 eV for PO4 in
sodium hexametaphosphate. These results showed that there are only small
increases in the binding energy when additional oxygen atoms are added to the
S-O chemical group. A similar result is obtained when the fourth oxygen or
poly-phosphate environment is added to the phosphorus compound. These BE values
are useful to researchers involved in identifying oxidation states of
phosphorus and sulfur atoms commonly observed on modified surfaces and
interfaces found in applications such as biomaterials, super-capacitors and
catalysis.
Keywords: Binding energies; oxidation
state; phosphorus; sulfur; XPS
ABSTRAK
Kajian ini menunjukkan bahawa
penambahbaikan yang berterusan dalam spektroskopi foto-elektron x-ray (XPS),
piawaian penentukuran dan prosedur pencocokan lengkung puncak, boleh menentukan
tenaga pengikat untuk sebatian fosforus dan sulfur yang terdiri daripada
pengoksidaan yang berbeza dengan lebih jitu. Berdasarkan analisis XPS ini,
tenaga pengikat (BE) untuk puncak S2p daripada sebatian
sulfur yang mempunyai pengoksidaan yang meningkat ialah: 166-167.5 eV untuk S=O
dalam dimetil sulfoxida, 168.1 eV untuk S=O2 dalam
poli-sulfon, 168.4 eV untuk SO3 dalam
polistirena sulfonat dan 168.8 eV untuk SO4 dalam
kondroitin sulfat. BE untuk puncak P2p daripada sebatian
fosforus menunjukkan bacaan berikut: 132.9 eV untuk PO3 dalam
tri-isopropil fosfit, 133.3 eV untuk PO4 dalam
fosfat gliserol, 133.5 eV untuk PO4 dalam
natrium tripolifosfat dan 134.0 eV untuk PO4 dalam
natrium hexametafosfat. Keputusan ini menunjukkan bahawa hanya ada peningkatan
yang kecil dalam tenaga pengikat (eV) apabila atom oksigen ditambah kepada
sebatian yang diikat oleh S-O. Keputusan yang sama diperoleh apabila
persekitaran oksigen atau poli-fosfat keempat ditambah kepada sebatian
fosforus. Nilai BE untuk sebatian sulfur dan fosforus
ini adalah berguna untuk para penyelidik yang cuba mengenal pasti sebatian yang
lazim terdapat di atas permukaan dan antara-muka untuk aplikasi seperti
bio-bahan, super-kapasitor dan mangkin.
Kata kunci: Fosforus; keadaan pengoksidaan; spektroskopi fotoelektron
sinar-x; sulfur; tenaga pengikat
RUJUKAN
Alexander,
M.R., Short, R.D., Jones, F.R., Stollenwerk, M., Zabold, J. & Michaeli, W.
1996. An x-ray photoelectron spectroscopic investigation into the chemical
structure of deposits formed from hexamethyldisiloxane/oxygen plasmas. Journal
of Materials Science 31(7): 1879-1885.
Andrade,
J.D. 1985. Principles of protein adsorption. In Surface and Interfacial
Aspects of Biomedical Polymers, edited by Andrade, J.D. New York: Plenum
Press. pp. 1-80.
ASTM. 2010. E2108-10 Standard practice for calibration
of the electron binding-energy scale of an x-ray photoelectron
spectrometer. West Conshohocken, PA: ASTM.
Austin, B.B.
1978. Errors in Practical Measurement in Science, Engineering
and Technology. New York: Wiley-Interscience Publication.
Beamson, G.
& Briggs, D. 1992. High Resolution XPS of Organic Polymers. New
York: Wiley.
Dietrich,
P.M., Horlacher, T., Girard-Lauriault, P.L., Gross, T., Lippitz, A., Min, H.,
Wirth, T., Castille, R., Seeberger, P.H. & Unger, W.E.S. 2011. Adlayers of
dimannoside thiols on gold: Surface chemical analysis. Langmuir 27(8):
4808-4815.
Fairley, N.
2003. XPS Lineshapes and Component Fitting in Surface Analysis by Auger and
X-ray Photoelectron Spectroscopy. Chichester: IM Publications and
SurfaceSpectra Limited.
Fairley, N.
& Carrick, A. 2005. The Casa Cookbook: Part 1: Recipes for XPS Data
Processing. Cheshire: Acolyte Science.
Giroux, T.A.
& Cooper, S.L. 1991. Surface characterization of plasma-derivatized
polyurethanes. Journal of Applied Polymer Science 43(1): 145-155.
Harrison, K.
& Hazell, L.B. 1992. The determination of uncertainties in quantitative
XPS/AES and its impact on data acquisition strategy. Surface and Interface
Analysis 18(5): 368-376.
Lin, J.C. & Chuang,
W.H. 2000. Synthesis, surface characterization, and platelet reactivity
evaluation for the self-assembled monolayer of alkanethiol with sulfonic acid functionality. Journal of Biomedical Materials Research 51(3): 413-423.
Lin, J.C., Chen, Y.F.
& Chen, C.Y. 1999. Surface characterization and platelet adhesion studies
of plasma polymerized phosphite and its copolymers with dimethylsulfate. Biomaterials 20(16): 1439-1447.
Lindberg, B.J., Hamrin,
K., Johansson, G., Gelius, U., Fahlman, A., Nordling, C. & Siegbahn, K.
1970. Molecular spectroscopy by means of ESCA [electron spectroscopy for
chemical analysis]. II. Sulfur compounds. Correlation of electron binding
energy with structure. Physica Scripta 1(5-6): 286-298.
Pelavin, M.,
Hendrickson, D.N., Hollander, J.M. & Jolly, W.L. 1970. Phosphorus 2p
electron binding energies. Correlation with extended Hueckel charges. Journal
of Physical Chemistry 74(5): 1116-1121.
Perkins, C.L. 2009.
Molecular anchors for self-assembled monolayers on zno: A direct comparison of
the thiol and phosphonic acid moieties. Journal of Physical Chemistry C 113(42):
18276-18286.
Ratner, B.D., & Castner,
D.G. 2003. Electron spectroscopy for chemical analysis. In Surface
Analysis: The Principal Techniques, edited by Vickerman, J.C.
Chichester: John Wiley and Sons. pp: 43-98.
Seredych, M., Wu, C.T.,
Brender, P., Ania, C.O., Vix-Guterl, C. & Bandosz, T.J. 2012. Role of
phosphorus in carbon matrix in desulfurization of diesel fuel using adsorption process. Fuel 92 (1):318-326.
Siow, K.S., Kumar, S.
& Griesser, H.J. 2015. Low-pressure plasma methods for generating
non-reactive hydrophilic and hydrogel-like bio-interface coatings - a review. Plasma
Processes and Polymers 12(1): 8-24.
Siow, K.S., Leanne, B.,
Sunil, K. & Hans, J.G. 2014. Deposition and XPS and FTIR analysis of plasma
polymer coatings containing phosphorus. Plasma Process Polymer 11(2):
133-141.
Siow, K.S., Britcher,
L., Kumar, S. & Griesser, H.J. 2009. Sulfonated surfaces by sulfur dioxide
plasma surface treatment of plasma polymer films. Plasma Process Polymer 6(9):
583-592.
Siow, K.S. 2007. Plasma based methods for producing controlled
polymer surfaces with sulfur and phosphorus containing chemical
groups and interactions between such surfaces and proteins. PhD
thesis. Ian Wark Research Institute, University of South Australia
(Unpublished).
Ward, A.J. & Short,
R.D. 1994. A spectroscopic analysis of plasma polymers prepared
from a series of vinyl sulfones. Surface and Interface Analysis
22(1-12): 477-482.
Wen, Y., Wang, B.,
Huang, C., Wang, L. & Hulicova-Jurcakova, D. 2015. Synthesis of
phosphorus-doped graphene and its wide potential window in aqueous
supercapacitors. Chemistry - A European Journal 21(1): 80-85.
*Pengarang untuk surat-menyurat; email: kimsiow@ukm.edu.my