Sains Malaysiana 47(8)(2018): 1923–1929
http://dx.doi.org/10.17576/jsm-2018-4708-34
Perubahan Sistem Arus Ionosfera di
Kawasan Asia Tenggara semasa Ribut Geomagnet pada Fasa Suria Minimum
(Changes in Ionospheric Currents System at Southeast
Asia Region during Geomagnetic Storm in Solar's Minimum Phase)
NURUL SHAZANA ABDUL HAMID1*, VIKSUTHORN AI WEN1, NUR IZZATI MOHD ROSLI1 & AKIMASA YOSHIKAWA2,3
1Pusat Pengajian Fizik Gunaan, Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Department of Earth and Planetary
Sciences, Faculty of Sciences, 33 Kyushu University, 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan
3International Center for Space Weather
Science and Education (ICSWSE), Kyushu University 53
6-10-1
Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Diserahkan: 3 Ogos 2017/Diterima: 19 Mac
2018
ABSTRAK
Sistem arus
di ionosfera khatulistiwa terdiri daripada elektrojet khatulistiwa
(EEJ)
dan suria senyap (Sq). Arus EEJ merupakan
satu jalur arus yang mengalir ke arah timur sepanjang kawasan
dip khatulistiwa. Arus Sq pula adalah gegelung
arus yang mengalir di hemisfera utara dan selatan bumi pada
arah yang bertentangan. Kajian ini
bertujuan untuk menganalisis kesan aktiviti matahari terhadap
profil latitud sistem arus, khususnya di kawasan Asia Tenggara.
Data yang digunakan dalam kajian ini merangkumi data geomagnet
daripada lima stesen magnetometer dalam rangkaian MAGDAS iaitu stesen Muntinlupa
(MUT),
Cebu (CEB), Davao (DAV), Manado (MND)
dan Pare Pare (PRP). Keamatan arus EEJ yang
paling tinggi adalah pada waktu tengah hari sekitar 1000 dan
1100 LT
semasa solar minimum dan kajian ini telah menganalisis
sistem arus daripada 1000 hingga 1400 LT. Analisis menunjukkan
bahawa ribut geomagnet yang berlaku pada 23 April 2008 adalah
disebabkan oleh letusan jirim korona (CME)
yang memberikan peningkatan kepada nilai arus pada hari tersebut.
Peningkatan yang ketara dapat dilihat pada arus di stesen hemisfera
selatan, iaitu stesen MND dan PRP.
Berdasarkan analisis yang dilakukan, ia
turut mendapati bahawa ribut geomagnet memberikan peningkatan
kepada nilai arus walaupun di luar waktu puncak. Selain
itu, profil arus ini turut dibandingkan dengan profil arus pada
hari senyap iaitu pada 21 April 2008.
Kata kunci: Aktiviti matahari; EEJ;
sistem arus ionosfera; Sq
ABSTRACT
Equatorial ionospheric current
system consists of equatorial electrojet (EEJ)
and solar quiet (Sq). EEJ current is a ribbon of current
flowing eastwards along the dip equator region. On the other hand, Sq current
is a loop of current that flows at the Earth’s northern and southern
hemispheres in different directions. This study is focusing on analysing the
effects of a solar event on the latitudinal profile of the current system,
specifically in Southeast Asian region. Data used in this study are geomagnetic
data from five magnetometer stations in MAGDAS network which are
Muntinlupa (MUT), Cebu (CEB), Davao (DAV),
Manado (MND) and Pare Pare (PRP).
The EEJ current intensity is known to be highest around noon
time between 1000 and 1100 LT during solar minimum and thus this
study analyses the current system from 1000 to 1400 LT.
The analysis showed that the geomagnetic storm occurred on 23 April 2008, which
is caused by coronal mass ejection (CME), gives rises to the
currents on that day. This increment is clearly observed on the currents at the
southern hemisphere stations, which are MND and PRP.
Our analysis also found that this geomagnetic storm gives increment to the
current at the non-peak time. Apart from that, the current profile on this day
is compared with the current profile from a quiet day on 21 April 2008.
Keywords: EEJ; ionospheric current system; solar event;
Sq
RUJUKAN
Hamid, N.S.A., Liu, H.,
Uozumi, T., Yoshikawa, A. & Annadurai, N.M.N. 2017a. Peak time of equatorial electrojet from
different longitude sectors during fall solar minimum. Journal of Physics:
Conference Series 852: 012015.
Hamid, N.S.A., Ismail,
W.N.I. & Yoshikawa, A. 2017b. Latitudinal variation of ionospheric currents in southeast
asian sector. Advanced Science Letters 23(2): 1444-1447.
Hamid, N.S.A., Liu, H.,
Uozumi, T., Yumoto, K. & Veenadhari, B. 2014. Relationship between
the equatorial electrojet and global Sq currents at the dip equator region. Earth, Planets and Space 66(146): 1-11.
Manoj, C., Lühr, H.,
Maus, S. & Nagarajan, N. 2006. Evidence for short spatial correlation lengths of the noontime equatorial
electrojet inferred from a comparison of satellite and ground magnetic data. Journal
of Geophysical Research 111: A11.
Onwumechili, C.A. 1997. The Equatorial Electrojet. Philadelphia: Gordon and
Breach Science Publishers. hlm. 627.
Prolss, G.W. 2004. Physics of the Earth's
Space Environment: An Introduction. Berlin: Springer.
Rastogi, R.G., Alex, S. & Patil. A.
1994. Seasonal variations of geomagnetic D, H and Z fields at
low latitudes. Journal of Geomagnetism and Geoelectricity 46:
115-126.
Shojanoori, R., Shafri,
H.Z.M., Mansor, S. & Ismail, M.H. 2016. The use of worldview-2
satellite data in urban tree species mapping by object-based image analysis
technique. Sains Malaysiana 45(7): 1025-1034.
Uozumi, T., Yumoto, K., Kitamura, K.,
Abe, S., Kakinami, Y., Shinohara, M., Yoshikawa, A., Kawano, H., Ueno, T.,
Tokunaga, T. & McNamara, D. 2008. A new index to monitor temporal and
long-term variations of the equatorial electrojet by MAGDAS/CPMN real-time
data: EE–index. Earth, Planets and Space 60(7): 785-790.
Yang, S.R. & Yeh,
Y.L. 2015. Geologic hazard risk assessment of slopeland villages in Southern
Taiwan using remote sensing techniques. Sains Malaysiana 44(12):
1677-1683.
Yumoto, K. & the
MAGDAS Group.
2006. MAGDAS project and its application for space weather.
In Solar Influence on the Heliosphere and Earth's Environment:
Recent Progress and Prospects, edited by Gopalswamy,
N. & Bhattacharya, A. hlm.
399-405.
*Pengarang untuk surat-menyurat;
email: shazana.ukm@gmail.com