Sains Malaysiana 50(4)(2021): 1175-1186

http://doi.org/10.17576/jsm-2021-5004-27

 

COVID-19 Mini-Review: D614G Mutation as an Independent Risk-Factor to the Expression of ACE2 and DPP4 Associated Increased Severity in COVID-19

(Ulasan Mini COVID-19: Mutasi D614G sebagai Faktor Risiko Bebas kepada Ekspresi ACE2 dan DPP4 Berkait dengan Peningkatan Keparahan COVID-19)

 

SITI ASMAA MAT JUSOH1,2, PARISA FOROOZANDEH1, LEE YAN FEN1,3, MARDANI ABDUL HALIM1,4, MANOJ KUMAR LASKMANAN1,4 & SHAHARUM SHAMSUDDIN1,2,5*

 

1Universiti Sains Malaysia (USM)-RIKEN, Interdisciplinary Collaboration for Advanced Sciences (URICAS), 11700 Gelugor, Pulau Pinang, Malaysia

 

2School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

3School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11700 Gelugor, Pulau Pinang, Malaysia

 

4School of Biological Sciences, Universiti Sains Malaysia, 11700 Gelugor, Pulau Pinang, Malaysia

 

5Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan Darul Naim, Malaysia

 

Diserahkan: 25 November 2020/Diterima: 5 Februari 2021

 

ABSTRACT

The novel coronavirus 2019 (COVID-19) has struck more than 99 million people worldwide and had claimed more than 2 million lives as of 23 January 2021, which affecting 221 countries/nations. Until now, the pandemic has not shown signals of slowing down, with no proven vaccine in sight. People are speculating on this unprecedented event. It is well documented that the receptor-binding domain (RBD) of the viral spiked S1 glycoprotein directly bind angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase-4 (DPP4) or CD26 (cluster of differentiation 26) receptors lead to their entry. The latest evidence demonstrated that SAR-CoV-2 possesses genetic heterogeneity, lead to the existence of a new SAR-CoV-2 variant, such as D614G encoded the spiked S1. The mutation involved changes in amino acid sequence of D (aspartic acid) into G (guanine) at position 614. D614G was reported to confer high infectivity and became the dominant form of the virus globally. Interestingly, current evidence found that D614G protein increases its infectivity dependent on the ACE2 receptor, and its co-binding receptor, DPP4. This proclaims implied to COVID-19 high-risk groups; the aging population and the people with comorbidities; hypertension, cardiovascular disease, and diabetes, which constituted the most of lethal cases, that overexpressed ACE2 and DPP4. The review aims to find an association between COVID-19 infectivity and severity relating to D614G mutation with the expression of ACE2 or DPP4 in these groups. We proposed that D614G mutation and expressions of ACE2 and DPP4 were mutually inclusive for increase infectivity, but not severity in COVID-19’s patients.

 

Keywords: Angiotensin-converting enzyme 2 (ACE2); COVID-19; dipeptidyl-peptidase-4 (DPP4); D614G mutation 

 

ABSTRAK

Koronavirus baru 2019 (COVID-19) telah menyerang lebih daripada 99 juta orang di seluruh dunia dan telah meragut lebih daripada 2 juta nyawa sehingga 23 Januari 2021, yang mempengaruhi 221 negara. Hingga kini, wabak ini tidak menunjukkan tanda-tanda pengurangan tanpa vaksin yang terbukti berkesan. Orang ramai membuat spekulasi mengenai peristiwa yang belum pernah terjadi sebelum ini. Didokumentasikan dengan baik bahawa domain pengikat reseptor (RBD) virus, glikoprotein spiked S atau S1 secara langsung mengikat enzim angiotensin-penukar (ACE2) dan dipeptidil-peptidase-4 (DPP4) atau reseptor CD26 (kelompok pembezaan 26) membawa kepada kemasukan mereka. Bukti terbaru menunjukkan bahawa SARCoV-2 memiliki heterogen genetik, menyebabkan wujudnya varian SAR-CoV-2 baru, seperti D614G yang mengekodkan glikoprotein S1. Mutasi tersebut melibatkan perubahan dalam urutan asid amino D (asid aspartik) menjadi G (guanin) pada kedudukan 614. D614G dilaporkan memberikan kebolehjangkitan tinggi dan menjadi bentuk virus yang dominan pada peringkat global. Menariknya, bukti semasa mendapati bahawa protein D614G meningkatkan kebolehjangkitannya bergantung pada reseptor ACE2 dan reseptor pengikat bersama DPP4. Ini merujuk kepada kumpulan berisiko tinggi COVID-19; populasi penuaan dan orang yang mempunyai kokemorbidan; hipertensi, penyakit kardiovaskular dan diabetes, yang merupakan sebahagian besar daripada kes kematian, yang tinggi ekspresi ACE2 dan DPP4. Ulasan ini bertujuan untuk mencari hubungan antara kebolehjangkitan dan keparahan COVID-19 yang berkaitan dengan mutasi D614G dengan ekspresi ACE2 atau DPP4 dalam kumpulan ini. Kami mencadangkan bahawa mutasi D614G dan ekspresi ACE2 dan DPP4 saling inklusif untuk meningkatkan kebolehjangkitan, tetapi tidak keparahan pada pesakit COVID-19.

 

Kata kunci: COVID-19; dipeptidil-peptidase-4 (DPP4); enzim angiotensin-penukar 2 (ACE2); mutasi D614G

 

RUJUKAN

Ansari, M.A., Marchi, E., Ramamurthy, N., Aschenbrenner, D., Hackstein, C.P., Lin, Shang-Kuan., Bowden, R., Sharma, E., Pedergnana, V., Venkateswaran, S., Kugathasan, S.,  Mo, A., Gibson, G., Cooke, G., McLauchlan, J., Barnes, E., Baillie, J.K., Teichmann, S., Mentzer, A., Todd, J., Knight, J., Uhlig, H. & Klenerman, P. 2020. Negative regulation of ACE2 by interferons in vivo and its genetic control. doi: https://doi.org/10.1101/2020.04.26.20080408.

Bansal, M. 2020. Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome 14(3): 247-250.

Breban, R., Riou, J. & Fontanet, A. 2013. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: Estimation of pandemic risk. Lancet (London, England) 382(9893): 694-699.

Cauchemez, S., Fraser, C., Van Kerkhove, M.D., Donnelly, C.A., Riley, S., Rambaut, A., Enouf, V., der Werf, S. &  Ferguson, N.M. 2014. Middle East respiratory syndrome coronavirus: Quantification of the extent of the epidemic, surveillance biases, and transmissibility. The Lancet Infectious Diseases 14(1): 50-56.

Chen, D., Li, X., Song, Q., Hu, C., Su, F. & Dai, J. 2020. Hypokalemia and clinical implications in patients with coronavirus disease 2019 (COVID-19). medRxiv 2(27): 20028530.

Choi, S., Jung, E., Choi, B.Y., Hur, Y.J. & Ki, M. 2018. High reproduction number of Middle East respiratory syndrome coronavirus in nosocomial outbreaks: Mathematical modelling in Saudi Arabia and South Korea. Journal of Hospital Infection 99(2): 162-168.

Cohen, J. 2020. COVID-19 shot protects monkeys. Science 368(6490): 456.

Cristiani, L., Mancino, E., Matera, L., Nenna, R., Pierangeli, A., Scagnolari, C. & Midulla, F. 2020. Will children reveal their secret? The coronavirus dilemma. European Respiratory Journal 55(4): 2000749.

Earnest, J.T., Hantak, M.P., Li, K., McCray, P.B., Perlman, S. & Gallagher, T. 2017. The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases. PLoS Pathogens 13(7): e1006546.

Elfiky, A.A., Mahdy, S.M. & Elshemey, W.M. 2017. Quantitative structure-activity relationship and molecular docking revealed a potency of anti-hepatitis C virus drugs against human corona viruses. Journal of Medical Virology 89(6): 1040-1047.

Fehr, A.R. & Perlman, S. 2015. Coronaviruses: An overview of their replication and pathogenesis. In. Methods in Molecular Biology, edited by Maier, H. & Britton, P. Volume 1282. New York: Humana Press.

Filardi, T. & Morano, S. 2020. COVID-19: Is there a link between the course of infection and pharmacological agents in diabetes? Journal of Endocrinological Investigation 43(8): 1053-1060.

Gallagher, P.E., Ferrario, C.M. & Tallant, E.A. 2008. Regulation of ACE2 in cardiac myocytes and fibroblasts. American Journal of Physiology 295(6): H2373-H2379.

Grubaugh, N.D., Hanage, W.P. & Rasmussen, A.L. 2020. Making sense of mutation: What D614G means for the COVID-19 pandemic remains unclear. Cell 182(4): 794-795.

Guy, J.L., Lambert, D.W., Turner, A.J. & Porter, K.E. 2008. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Experimental Physiology 93(5): 579-588.

Hu, J., He, C.L., Gao, Q.Z., Zhang, G.J., Cao, X.X., Long, Q.X., Deng, H.J., Huang, L.Y.,  Chen, J., Wang, K., Tang, N. & Huang, A.L. 2020. D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity. bioRxiv doi: https://doi.org/10.1101/2020.06.20.161323.

Huang, Y., Yang, C., Xu, X.F., Xu, W. & Liu, S.W. 2020. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica 41: 1141-1149.

Iacobellis, G. 2020. COVID-19 and diabetes: Can DPP4 inhibition play a role? Diabetes Research and Clinical Practice 162: 108125.

Imai, Y., Kuba, K., Ohto-Nakanishi, T. & Penninger, J.M. 2010. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circulation Journal 74(3): 405-410.

Isabel, S., Graña-Miraglia, L., Gutierrez, J.M., Bundalovic-Torma, C., Groves, H.E., Isabel, M.R., Eshaghi, AliReza., Patel, S.N., Gubbay, J.B., Poutanen, T., Guttman, D.S. & Poutanen, S.M. 2020. Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Scientific Reports 10(1): 14031.

Kim, E.N., Kim, M.Y., Lim, J.H., Kim, Y., Shin, S.J., Park, C.W., Kima, Y.S., Sik, Y., Hye, C., Yoon, E. & Choi, B.S. 2018. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system. Atherosclerosis 270: 123-131.

Kim, K.M., Noh, J.H., Bodogai, M., Martindale, J.L., Yang, X., Indig, F.E., Basu, S.K., Ohnuma, K., Morimoto, C., Johnson, P.F., Biragyn, A., Abdelmohsen, K. & Gorospe, M. 2017. Identification of senescent cell surface targetable protein DPP4. Genes and Development 31(15): 1529-1534.

Korber, B., Fischer, W.M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E.E., Bhattacharya, T., Foley, B., Hastie, K.M., Parker, M.D., Partridge, D.G., Evans, C.M., Freeman, T.M. & Montefiori, D.C. 2020. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 Virus. Cell 182(4): 812-827.

Kovacic, J.C., Moreno, P., Nabel, E.G., Hachinski, V. & Fuster, V. 2011. Cellular senescence, vascular disease, and aging: Part 2 of a 2-part review: Clinical vascular disease in the elderly. Circulation 123(17): 1900-1910.

Kuba, K., Imai, Y., Ohto-Nakanishi, T. & Penninger, J.M. 2010. Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology & Therapeutics 128(1): 119-128.

Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H., Fisman, D. & Samore, M.H. 2003. Transmission dynamics and control of severe acute respiratory syndrome. Science 300(5627): 1966-1970.

Liu, J., Xie, W., Wang, Y., Xiong, Y., Chen, S., Han, J. & Wu, Q. 2020. A comparative overview of COVID-19, MERS and SARS: Review article. International Journal of Surgery (London, England) 81: 1-8.

Mah, W., Jiang, G., Olver, D., Gallant-Behm, C., Wiebe, C., Hart, D.A., Koivisto, L., Larjava, H. & Häkkinen, L. 2017. Elevated CD26 expression by skin fibroblasts distinguishes a profibrotic phenotype involved in scar formation compared to gingival fibroblasts. American Journal of Pathology 187(8): 1717-1735.

Majumder, M. & Mandl, K.D. 2020. Early transmissibility assessment of a novel coronavirus in Wuhan, China. SSRN eJournal: 1-7. http://dx.doi.org/10.2139/ssrn.3524675.

McAuley, A.J., Kuiper, M.J., Durr, P.A., Bruce, M.P., Barr, J., Todd, S., Au, G.G., Blasdell, K., Tachedjian, M., Lowther, S., Marsh, G.A., Edwards, S., Poole, T., Layton, R., Riddell, S.J., Drew, T.W., Druce, J.D., Smith, T.R.F., Broderick, K.E. & Vasan, S.S. 2020. Experimental and in silico evidence suggests vaccines are unlikely to be affected by D614G mutation in SARS-CoV-2 spike protein. npj Vaccines 5(1): 96.

Meng, Y., Yu, C.H., Li, W., Li, T., Luo, W., Huang, S., Wu, P.S., Cai, S.X. & Li, X. 2013. Angiotensin-converting enzyme 2/angiotensin-(1-7)/mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. American Journal of Respiratory Cell and Molecular Biology 50(4): 723-736.

Meyerholz, D.K., Lambertz, A.M. & McCray, P.B. 2016. Dipeptidyl peptidase 4 distribution in the human respiratory tract implications for the Middle East respiratory syndrome. American Journal of Pathology 186(1): 78-86.

Millet, J.K., Kien, F., Cheung, C.Y., Siu, Y.L., Chan, W.L., Li, H., Leung, H.L., Jaume, M., Bruzzone, R., Peiris, J.S.M., Altmeyer, R.M. & Nal, B. 2012. Ezrin interacts with the SARS coronavirus Spike protein and restrains infection at the entry stage. PLoS ONE 7(11): e49566-e49566.

Ogawa, J., Zhu, W., Tonnu, N., Singer, O., Hunter, T., Ryan, A.L. & Pao, G.M. 2020. The D614G mutation in the SARS-CoV2 Spike protein increases infectivity in an ACE2 receptor dependent manner. bioRxiv doi: 10.1101/2020.07.21.214932.

Onder, G., Rezza, G. & Brusaferro, S. 2020. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323(18): 1775-1776.

Oudit, G.Y., Kassiri, Z., Patel, M.P., Chappell, M., Butany, J., Backx, P.H., Tsushima, R.G., Scholey, J.W., Khokha, R. & Penninger, J.M. 2007. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular Research 75(1): 29-39.

Ovsyannikova, I.G., Haralambieva, I.H., Crooke, S.N., Poland, G.A. & Kennedy, R.B. 2020. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunological Reviews 296(1): 205-219.

Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., Masciovecchio, C., Angeletti, S., Ciccozzi, M., Gallo, R.C., Zella, D. & Ippodrino, R. 2020. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine 18(1): 179.

Patel, V.B., Parajuli, N. & Oudit, G.Y. 2013. Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clinical Science 126(7): 471-482.

Plante, J.A., Liu, Y., Liu, J., Xia, H., Johnson, B.A., Lokugamage, K.G., Zhang, X., Muruato, A.E., Zou, J., Fontes-Garfias, C.R., Mirchandani, D., Scharton, D., Bilello, J.P., Ku, Z., An, Z., Kalveram, B., Freiberg, A.N., Menachery, V.D., Xie, X., Plante, K.S., Weaver S.C. & Shi, P.Y. 2020. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592: 116-121.

Qian, Z., Travanty, E.A., Oko, L., Edeen, K., Berglund, A., Wang, J., Ito, Y., Holmes, K.V. & Mason, R.J. 2013. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. American Journal of Respiratory Cell and Molecular Biology 48(6): 742-748.

Raj, V.S., Mou, H., Smits, S.L., Dekkers, D.H.W., Müller, M.A., Dijkman, R., Muth, D., Demmers, J.A.A., Zaki, Ali., Fouchier, R.A.M., Thiel, V., Drosten, C., Rottier, P.J.M., Osterhaus, A.D.M.E., Bosch, B.J. & Haagmans, B.L. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440): 251-254.

Rao, S., Lau, A. & So, H.C. 2020. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian Randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care 43(7): 1416.

Remais, J. 2010. Modelling environmentally-mediated infectious diseases of humans: Transmission dynamics of schistosomiasis in China. In Modelling Parasite Transmission and Control, edited by Michael, E. & Spear, R.C. Volume 674. New York: Springer. pp. 79-98.

Richardson, S., Hirsch, J.S., Narasimhan, M., Crawford, J.M., McGinn, T. & Davidson, K.W. 2020. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 323(20): 2052-2059.

Rod, J.E., Trespalacios, O.O. & Cortes, J.R. 2020. A brief-review of the risk factors for covid-19 severity. Revista de Saude Publica 54: 60.

Romano, M., Ruggiero, A., Squeglia, F., Maga, G. & Berisio, R. 2020. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9(5): 1267.

Sargiacomo, C., Sotgia, F. & Lisanti, M.P. 2020. COVID-19 and chronological aging: Senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging 12(8): 6511-6517.

Schiffrin, E.L., Flack, J.M., Ito, S., Muntner, P. & Webb, R.C. 2020. Hypertension and COVID-19. American Journal of Hypertension 33(5): 373.

Scott, L.J. 2017. Sitagliptin: A review in Type 2 diabetes. Drugs 77(2): 209-224.

Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. & Li, F. 2020. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences 117(21): 11727.

Shereen, M.A., Khan, S., Kazmi, A., Bashir, N. & Siddique, R. 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced  Research 24: 91-98.

Sonia, K.B., Noureddine, I.K., Ribeiro, T.P., Silva, G.C., Abbas, M., Kheloufi, M., Lee, J.O., Toti, F., Auger, C. & Schini, K. 2015. Redox-sensitive induction of the local angiotensin system promotes both premature and replicative endothelial senescence: Preventive effect of a standardized crataegus extract. The Journals of Gerontology Series A 71(12): 1581-1590.

Sprott, R.L. 2010. Biomarkers of aging and disease: Introduction and definitions. Experimental Gerontology 45(1): 2-4.

Stefanelli, P., Faggioni, G., Lo Presti, A., Fiore, S., Marchi, A., Benedetti, E., Fabiani, C., Anselmo, A., Ciammaruconi, A., Fortunato, A., De Santis, R., Fillo, S., Capobianchi, M.R., Gismondo, M.R., Ciervo, A., Rezza, G., Castrucci, M.R., Lista, F. & ISS COVID-19 Study Group. 2020. Whole genome and phylogenetic analysis of two SARS-CoV-2 strains isolated in Italy in January and February 2020: Additional clues on multiple introductions and further circulation in Europe. Eurosurveillance 25(13): 2000305.

Su, Y.C.F., Anderson, D.E., Young, B.E., Linster, M., Zhu, F., Jayanthi Jayakumar, Zhuang, Y., Shirin Kalimuddin, Low, J.G.H., Tan, C.W., Chia, W.N., Mak, T.M., Octavia, S., Chavatte, J.M., Lee, R.T.C., Surinder Pada, Tan, S.Y., Sun, L., Yan, G.Z., Maurer-Stroh, S., Mendenhall, I.H., Leo, Y.S., Lye, D.C., Wang, L.F. & Smith, G.J.D. 2020. Discovery and genomic characterization of a 382-nucleotide deletion in ORF7b and ORF8 during the early evolution of SARS-CoV-2. mBio 11(4): e01610-01620.

Sun, P., Lu, X., Xu, C., Sun, W. & Pan, B. 2020. Understanding of COVID-19 based on current evidence. Journal of Medical Virology 92(6): 548-551.

Valderas, J.M., Starfield, B., Sibbald, B., Salisbury, C. & Roland, M. 2009. Defining comorbidity: Implications for understanding health and health services. Annals of Family Medicine 7(4): 357-363.

Vankadari, N. & Wilce, J.A. 2020. Emerging Wuhan (COVID-19) coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerging Microbes & Infections 9(1): 601-604.

Volz, E., Hill, V., McCrone, J.T., Price, A., Jorgensen, D., O’Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F.F., Rey, S.M., Nicholls, S.M., Colquhoun, R.M., Filipe, A.S., Shepherd, J., Pascall, D.J., Shah, R., Jesudason, N. & Connor, T.R. 2020. Evaluating the effects of SARS-CoV-2 Spike mutation D614G on transmissibility and pathogenicity. Cell 184(1): 64-75.

Wagner, C., Roychoudhury, P., Hadfield, J., Hodcroft, E.B., Lee, J., Moncla, L.H., Müller, N.F., Behrens, C., Huang, M.L., Mathias, P., Pepper, G., Shrestha, L., Hong, X., Neher, R.A., Baird, G.S., Greninger, A.L., Jerome, K.R. & Bedford, T. 2020. Comparing viral load and clinical outcomes in Washington State across D614G mutation in spike protein of SARS-CoV-2. GitHub https://github.com/blab/ncov-wa-d614g.

Wang, C., Liu, Z., Chen, Z., Huang, X., Xu, M., He, T. & Zhang, Z. 2020. The establishment of reference sequence for SARS-CoV-2 and variation analysis. Journal of Medical Virology 92(6): 667-674.

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J. & Peng, Z. 2020. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323(11): 1061-1069.

Wang, L.S., Wang, Y.R., Ye, D.W. & Liu, Q.Q. 2020. A review of the 2019 novel coronavirus (COVID-19) based on current evidence. International Journal of Antimicrobial Agents 55(6): 105948.

Williams, R., Karuranga, S., Malanda, B., Saeedi, P., Basit, A., Besançon, S., Bommer, C., Esteghamati, A., Ogurtsova, K., Zhang, P. & Colagiuri, S. 2020. Global and regional estimates and projections of diabetes-related health expenditure. Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 162: 108072.

Wu, C., Chen, X., Cai, Y., Xia, J., Zhou, X., Xu, S., Huang, H., Zhang, L., Zhou, X., Du, C., Zhang, Y., Song, J., Wang, S., Chao, Y., Yang, Z., Xu, J., Zhou, X., Chen, D., Xiong, W., Xu, L., Zhou, F., Jiang, J., Bai, C., Zheng, J. & Song, Y. 2020a. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA 180(7): 934.

Wu, J.T., Leung, K., Bushman, M., Kishore, N., Niehus, R., de Salazar, P.M., Cowling, B.J., Lipsitch, M. & Leung, G.M. 2020b. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine 26(4): 506-510.

Wu, J.T., Leung, K. & Leung, G.M. 2020c. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet 395(10225): 689-697.

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. & Zhou, Q. 2020. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367(6485): 1444-1448.

Young, B.E., BChir, M.B., Fong, S.W., Chan, Y.H., Mak, T.M., Ang, L.W., Anderson, D.E., Lee, C.Y.P., Siti Naqiah Amrun, Lee, B., Goh, Y.S., Su, Y.C.F., Wei, W.E., Shirin Kalimuddin, Chai, L.Y.A., Pada Surinder, Tan, S.Y., Sun, L., Parthasarathy Purnima & Ng, L.F.P. 2020. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: An observational cohort study. Lancet (London, England) 396(10251): 603-611.

Yu, J., Tostanoski, L.H., Peter, L., Mercado, N.B., McMahan, K., Mahrokhian, S.H. & Barouch, D.H. 2020. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 369(6505): 806-811.

Zare-Zardini, H., Soltaninejad, H., Ferdosian, F., Hamidieh, A.A. & Memarpoor-Yazdi, M. 2020. Coronavirus disease 2019 (COVID-19) in children: Prevalence, diagnosis, clinical symptoms, and treatment. International Journal of General Medicine 13: 477-482.

Zhang, H., Penninger, J.M., Li, Y., Zhong, N. & Slutsky, A.S. 2020. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine 46(4): 586-590.

Zhang, J.J., Dong, X., Cao, Y.Y., Yuan, Y.D., Yang, Y.B., Yan, Y.Q., Akdis, C.A. & Gao, Y.D. 2020. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75(7): 1730-1741.

Zhang, L., Jackson, C.B., Mou, H., Ojha, A., Rangarajan, E.S., Izard, T., Farzan, M. & Choe, H. 2020. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv 2020.2006.2012.148726.

Zhang, S., Diao, M., Yu, W., Pei, L., Lin, Z. & Chen, D. 2020. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases: IJID: Official publication of the International Society for Infectious Diseases 93: 201-204.

Zheng, J. 2020. SARS-CoV-2: An emerging coronavirus that causes a global threat. International Journal of Biological Sciences 16(16): 1678-1685.

Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., Li, Q., Jiang, C., Zhou, Y., Liu, S., Ye, C., Zhang, P., Xing, Y. & Guo, H. 2020. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. Journal of Infection 81(2): e16-e25.

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, Hui., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. &  Cao, B. 2020. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: A retrospective cohort study. The Lancet 395(10229): 1054-1062.

Zhuang, M.W., Cheng, Y., Zhang, J., Jiang, X.M., Wang, L., Deng, J. & Wang, P.H. 2020. Increasing host cellular receptor-angiotensin‐converting enzyme 2 (ACE2) expression by coronavirus may facilitate 2019‐nCoV (or SARS‐CoV‐2) infection. Journal of Medical Virology doi: https://doi.org/10.1101/2020.02.24.963348.

Zisman, L.S., Meixell, G.E., Bristow, M.R. & Canver, C.C. 2003. Angiotensin-(1-7) formation in the intact human heart. Circulation 108(14): 1679-1681.

 

*Pengarang untuk surat-menyurat; email: shaharum1@usm.my 

 

   

 

sebelumnya