Sains Malaysiana 50(6)(2021): 1651-1662

http://doi.org/10.17576/jsm-2021-5006-12

 

Toxins of Foodborne Pathogen Bacillus cereus and the Regulatory Factors Controlling the Biosynthesis of Its Toxins

(Toksin daripada Patogen Bawaan Makanan Bacillus cereus dan Faktor Kepengawalaturan yang Mengawal Biosintesis Toksinnya)

 

YUGENRAJ NAVANEETHAN1, MOHD ESAH EFFARIZAH1* & NORLI ISMAIL2

 

1Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

2Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

Diserahkan: 20 Mei 2020/Diterima: 9 Oktober 2020

 

ABSTRACT

Bacillus cereus is a versatile organism which causes two distinct types of food poisoning by producing toxins. Toxin formation in B. cereus is very much a complex process involving co-regulation of multiple genes exerting control at transcriptional, translational and post-translational level and such regulations too are often influenced by extrinsic factors. A comprehensive understanding of such factors is very crucial for holistic approaches and strategies in order to minimise food poisoning risk. Hence, this review will focus on the intrinsic and extrinsic factors controlling toxin biosynthesis in B. cereus.

 

Keywords: Bacillus cereus; emetic toxin; enterotoxins; gastroenteritis; virulence genes

 

ABSTRAK

Bacillus cereus adalah organisma serba boleh yang menyebabkan dua jenis keracunan makanan yang berbeza dengan menghasilkan toksin. Pembentukan toksin dalam B. cereus merupakan satu proses yang sangat kompleks melibatkan pengawalaturan pelbagai gen yang menjalankan kawalan pada tahap transkripsi, translasi and pascatranslasi manakala pengawalaturan tersebut sering dipengaruhi oleh faktor ekstrinsik. Pemahaman yang komprehensif mengenai faktor tersebut adalah sangat penting untuk pendekatan dan strategi yang holistik bagi mengurangkan risiko keracunan makanan. Oleh itu, tinjauan ini akan memberi tumpuan pada faktor intrinsik dan ekstrinsik yang mengawal biosintesis toksin dalam B. cereus.

 

Kata kunci: Bacillus cereus; enterotoksin; gastroenteritis; gen kevirulenan; toksin emetik

 

RUJUKAN

Agata, N., Ohta, M. & Yokoyama, K. 2002. Production of Bacillus cereus emetic toxin (cereulide) in various foods. International Journal of Food Microbiology 73(1): 23-27.

Agata, N., Ohta, M., Mori, M. & Shibayama, K. 1999. Growth conditions of and emetic toxin production by Bacillus cereus in a defined medium with amino acids. Microbiology Immunology 43(1): 15-18.

Agata, N., Ohta, M., Arakawa, Y. & Mori, M. 1995. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiology 141(4): 983-988.

Agata, N., Mori, M., Ohta, M., Suwan, S., Ohtani, I. & Isobe, M. 1994. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiology Letters 121(1): 31-34.

Apetroaie-Constantin, C., Shaheen, R., Andrup, L., Smidt, L., Rita, H. & Salkinoja-Salonen, M. 2008. Environment driven cereulide production by emetic strains of Bacillus cereus. International Journal of Food Microbiology 127(1-2): 60-67.   

Arnesen, L.P.S., Fagerlund, A. & Granum, P.E. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiological Review Article 32(4): 579-606.

Asano, S.I., Nukumizu, Y., Bando, H., Iizuka, T. & Yamamoto, T. 1997. Cloning of novel enterotoxin genes from Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology 63(3): 1054-1057.

Beattie, S.H. & Williams, A.G. 2002. Growth and diarrheagenic enterotoxin formation by strains of Bacillus cereus in vitro in controlled fermentations and in situ in food products and a model food system. Food Microbiology 93: 329-340.

Beecher, D.J. & Macmillan, J.D. 1991. Characterization of the components of haemolysin BL from Bacillus cereus. Infection and Immunity 59(5): 1778-1784.

Beecher, D.J. & Macmillan, J.D. 1990. A novel biocompetent haemolysin from Bacillus cereus. Infection and Immunity 58(7): 2220-2227.

Bottone, E.J. 2010. Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews 23(2): 382-392.

Burgess, G. & Horwwod, P. 2006. A Report for the Rural Industries and Development Corporation. Development of Improved Molecular Detection Methods for B. cereus Toxins. The Genes Responsible for the Emetic Toxin were Discovered and New Tests Developed. Australia: Rural Industries and Development Corporation.

 Carlin, F., Fricker, M., Pielaat, A., Heisterkamp, S., Shaheen, R., Salonen, M.S., Svensson, B., Nguyen-thé, C. & Ehling-Schulz, M. 2006. Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. International Journal of Food Microbiology 109(1-2): 132-138.

Carroll, L.M., Wiedmann, M., Mukherjee, M., Nicholas, D.C., Mingle, L.A., Dumas, N.B., Cole, J.A. & Kovac, J. 2019. Characterization of emetic and diarrheal Bacillus cereus strains from a 2016 foodborne outbreak using whole-genome sequencing: Addressing the microbiological, epidemiological, and bioinformatic challenges. Frontiers in Microbiology 10(144): 1-20.

Carter, L., Chase, H.R., Gieseker, C.M., Hasbrouck, N.R., Stine, C.B., Khan, A., Ewing-Peeples, L.J., Tall, B.D. & Gopinath, G.R. 2018. Analysis of enterotoxigenic Bacillus cereus strains from dried foods using whole genome sequencing, multi-locus sequence analysis and toxin gene prevalence and distribution using endpoint PCR analysis. International Journal of Food Microbiology 284: 31-39.

Choma, C. & Granum, P.E. 2002. The enterotoxin T (BcET) from Bacillus cereus can probably not contribute to food poisoning. FEMS Microbiology Letters 217(1): 115-119.

Cueppens, S., Rajkovic, A., Heyndrickx, M., Tsillia, V., Wiele, T.V.D., Boon, N. & Uyttendaele, M. 2011. Regulation of toxin production by Bacillus cereus and its food safety implications. Critical Reviews in Microbiology 37(3): 188-213.

Declerck, N., Bouillaut, L., Chaix, D., Rughani, N., Slamti, L., Hoh, F., Lereclus, D. & Arold, S.T. 2007. Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria PNAS 104(47): 18490-18495.

Dierick, K., Van Coillie, E., Swiecicka, I., Meyfroidt, G., Devlieger, H., Meulemans, A., Hoedemaekers, G., Fourie, L., Heyndrickx, M. & Mahillon, J. 2005. Fatal family outbreak of Bacillus cereus associated food poisoning. Journal of Clinical Microbiology 43(8): 4277-4279.

Duport, C., Zigha, A., Rosenfeld, E. & Schmitt, P. 2006. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system. Journal of Bacteriology 188(18): 6640-6651.

Duport, C., Thomassin, S., Bourel, G. & Philippe, S. 2004. Anaerobiosis and low specific growth rates enhance haemolysin BL production by Bacillus cereus F4430/73. Archives of Microbiology 182(1): 90-95.

Ehling-Schulz, M., Fricker, M. & Gohar, M. 2015. Food-bacteria interplay: Pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology 6: 704.

Ehling-Schulz, M., Fricker, M., Grallert, H., Rieck, P., Wagner, M. & Scherer, S. 2006. Cereulide synthetase gene cluster from emetic Bacillus cereus: Structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiology 6: 20.

Ehling-Schulz, M., Vukov, N., Schulz, A., Shaheen, R., Andersson, M., Märtlbauer, E. & Scherer, S. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Applied and Environmental Microbiology 71(1): 105-113.

Esbelin, J., Armengaud, J., Zigha, A. & Duport, C. 2009. ResDE-dependent regulation of enterotoxin gene expression in Bacillus cereus: Evidence for multiple modes of binding for ResD and interaction with Fnr.  Journal of Bacteriology 191(13): 4419-4426.

Fagerlund, A., Lindbäck, T. & Granum, P.E. 2010. Bacillus cereus cytotoxins Hbl, Nhe and CytK are secreted via the Sec translocation pathway. BMC Microbiology 10: 304.

Fagerlund, A., Brillard, J., Fürst, R., Guinebretière, M.H. & Granum, P.E. 2007. Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group. BMC Microbiology 7: 43.

Fagerlund, A., Ween, O., Lund, T., Hardy, S.P. & Granum, P.E. 2004. Genetic and functional analysis of the cytK family of genes in Bacillus cereus. Microbiology 150(Pt 8): 2689-2697.

Fermanian, C., Lapeyre, C., Frémy, J.M. & Claisse, M. 1997. Diarrheal toxin production at low temperature by selected strains of Bacillus cereus. Journal of Dairy Research 64(4): 551-559.

Finlay, W.J.J., Logan, N.A. & Sutherland, A.D. 2002. Bacillus cereus emetic toxin production in relation to dissolved oxygen tension and sporulation. Food Microbiology 19(5): 423-430.

Finlay, W.J.J., Logan, N.A. & Sutherland, A.D. 2000. Bacillus cereus produces most emetic toxin at lower temperatures. Letters in Applied Microbiology 31(5): 385-389.

Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S. & Ehling-Schulz, M. 2012. CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology 85(1): 67-88.

Garcia-Aribas, M.L. & Kramer, J.M. 1990. The effect of glucose, starch, and pH on growth, enterotoxin and haemolysin production by strains of Bacillus cereus associated with food poisoning and non-gastrointesinal infection. International Journal of Food Microbiology 11(1): 21-33.

Ghelardi, E., Celandroni, F., Salvetti, S., Ceragioli, M., Beecher, D.J., Senesi, S. & Wong, A.C.L. 2007. Swarming behavior of and hemolysin BL secretion in Bacillus cereus. Applied and Environmental Microbiology 73(12): 4089-4093.

Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O.A., Gominet, M., Kolstø, A.B. & Lereclus, D. 2008. The PlcR virulence regulon of Bacillus cereus. PLos ONE 3(7): e2793.

Grenha, R., Slamti, L., Nicaise, M., Refes, Y., Lereclus, D. & Nessler, S. 2013. Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum sensing signal peptide PapR. PNAS 110(3): 1047-1052.

Guinebretière, M.H., Auger, S., Galleron, N., Contzen, M., De Sarrau, B., De Buyser, M.L., Lamberet, G., Fagerlund, A., Granum, P.E., Lereclus, D., DeVos, P., Nguyen-thé, C.  & Sorokin, A. 2013. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. International Journal of Systematic and Evolutionary Microbiology 63(Pt 1): 31-40.

Häggblom, M.M., Apetroaie, C., Andersson, M.A. & Salkinoja-Salonen, M.S. 2002. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Applied and Environmental Microbiology 68(5): 2479-2483.

Hansen, B.M., Høiby, P.E., Jensen, G.B. & Hendriksen, N.B. 2003. The Bacillus cereus bceT enterotoxin sequence reappraised. FEMS Microbiology Letters 223(1): 21-24.

Heilkenbrinker, U., Dietrich, R., Didier, R., Zhu, K., Lindbäck, T., Granum, P.E. & Märtlbauer, E. 2013. Complex formation between NheB and NheC is necessary to induce cytotoxic activity by the three-component Bacillus cereus Nhe enterotoxin. PLoS ONE 8(4): e63104.

Ichikawa, K., Gakumazawa, M., Inaba, A., Shiga, K., Takeshita, S., Mori, M. & Kikuchi, N. 2010. Acute encephalopathy of Bacillus cereus mimicking Reye syndrome. Brain and Development 32(8): 688-690.

Jääskeläinen, E.L., Häggblom, M.M., Andersson, M.A. & Salkinoja-Salonen, M.S. 2004. Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. International Journal of Food Microbiology 96(1): 75-83.

Jääskeläinen, E.L., Häggblom, M.M., Andersson, M.A., Vanne, L. & Salkinoja-Salonen, M.S. 2003. Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: Quantitative analysis by chemical and biological methods. Journal of Food Protection 66(6): 1047-1054. 

Jeßberger, N., Kry, V.M., Rademacher, C., Böhm, M.E., Mohr, A.K., Ehling-Schulz, M., Scherer, S. & Märtlbauer, E. 2015. From genome to toxicity: A combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus. Frontiers in Microbiology 6: 560.

Jessberger, N., Dietrich, R., Schwemmer, S., Tausch, F., Schwenk, V., Didier, A. & Märtlbauer, E. 2019. Binding to the target cell surface is the crucial step in pore formation of haemolysin BL from Bacillus cereus. MPDI Toxins 11(5): 281.

Kranzler, M., Stollewerk, K., Rouzeau-Szynalski, K., Blayo, L., Sulyok, M. & Ehling-Schulz, M. 2016. Temperature exerts control of Bacillus cereus emetic toxin production on post-transcriptional levels. Frontiers in Microbiology 7: 1640.

Lereclus, D., Agaisse, H., Grandvalet, C., Salamitou, S. & Gominet, M. 2000. Regulation of toxin and virulence gene transcription in Bacillus thuringiensis. International Journal of Medical Microbiology 290(4-5): 295-299.

Lindbäck, T., Fagerlund, A., Rødland, M.S. & Granum, P.E. 2004. Characterization of Bacillus cereus Nhe enterotoxin. Microbiology 150(Pt 2): 3959-3967.

Lindbäck, T., Mols, M., Basset, C., Granum, P.E., Kuipers, O.P. & Kovacs, A.T. 2012. CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus. Environmental Microbiology 14(8): 2233-2246.

Lücking, G., Dommel, M.K., Scherer, S., Fouet, A. & Ehling-Schulz, M. 2009. Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 155(Pt 3): 922-931.

Lücking, G., Frenzel, E., Rütschle, A., Marxen, S., Stark, T.D., Hofmann, T., Scherer, S. & Ehling-Schulz, M. 2015. Ces locus embedded proteins control the non-ribosomal synthesis of the cereulide toxin in emetic Bacillus cereus on multiple levels. Frontiers in Microbiology 6: 1101.

Lund, T., De Buyser, M.L. & Granum, P.E. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Molecular Microbiology 38(2): 254-261.

Lund, T. & Granum, P.E. 1996. Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS Microbiology Letters 141(2-3): 151-156.

Mahler, H., Pasi, A., Kramer, J.M., Schulte, P., Scoging, A.C., Bär, W. & Krähenbühl, S. 1997 Fulminant liver failure in association with the emetic toxin of Bacillus cereus. The New England Journal of Medicine 336(16): 1142-1148.

Majed, R., Faille, C., Kallassy, M. & Gohar, M. 2016. Bacillus cereus biofilms-same, only different. Frontiers in Microbiology 7: 1054.

Marxen, S., Stark, T.D., Frenzel, E., Rütschle, A., Lücking, G., Pürstinger, G., Pohl, E.E., Ehling-Schulz, M., Scherer, S. & Hofmann, T. 2015. Chemodiversity of cereulide, the emetic toxin of Bacillus cereus. Analytical and Bioanalytical Chemistry 407(9): 2439-2453.

Mazzantini, D., Celandroni, F., Salvetti, S., Gueye, S.A., Lupetti, A., Senesi, S. & Ghelardi, E. 2016. FlhF is required for swarming motility and full pathogenicity of Bacillus cereus. Frontiers in Microbiology 19: 1644.

Messelhäusser, U., Frenzel, E., Blöchinger, C., Zucker, R., Kämpf, P. & Ehling-Schulz, M. 2014. Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence study in Bavaria (2005-2013). Biomedical Research International 2014: 465603.

Naranjo, M., Denayer, S., Botteldoorn, N., Delbrassinne, L., Veys, J., Waegenaere, J., Sirtaine, N., Driesen, R.B., Sipido, K.R., Mahillon, J. & Dierick, K. 2011. Sudden death of a young adult associated with Bacillus cereus food poisoning. Journal of Clinical Microbiology 49(12): 4379-4381.

Oh, M.H. & Cox, J.M. 2010. Development and application of a centrifugation-plating method to study the biodiversity of Bacillus species in rice products. Food Control 21(1): 7-12.

Ouhib-Jacobs, O., Lindley, N.D., Schmitt, P. & Clavel, T. 2009. Fructose and glucose mediate enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC 14579. Journal of Applied Microbiology 107(3): 821-829.

Paananen, A., Mikkola, R., Sareneva, T., Matikainen, S., Hess, M., Andersson, M., Julkunen, I., Salkonoja-Salonen, M.S. & Timonen, T. 2002. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from Bacillus cereus. Clinical and Experimental Immunology 129(3): 420-428.

Park, Y.B., Kim, J.B., Jin, Y.G. & Oh, D.H. 2008. Effect of temperatures on the enterotoxin production of Bacillus cereus in cereal grains. Food Science and Biotechnology 17: 824-828.

Phat, C., Kim, S., Park, J. & Lee, C. 2016. Detection of emetic toxin genes and in Bacillus cereus isolated from food and their production of cereulide in liquid culture. Journal of Food Safety37(1): e12293.

Rajkovic, A., Uyttendaele, M., Sylvie-Anne, O., Jääskeläinen, E., Salkinoja-Salonen, M. & Debevere, J. 2006. Influence of type of food on the kinetics and overall production of Bacillus cereus emetic toxin. Journal of Food Protection 69(4): 847-852.

Rasko, D.A., Rosovitz, M.J., Økstad, O.A., Fouts, D.E., Jiang, L., Cer, R.Z., Kolstø, A.B., Gill, S.R. & Ravel, J. 2007. Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B. cereus group plasmids, including Bacillus anthracis pXO1. Journal of Bacteriology 189(1): 52-64.

Rouzeau-Szynalski, K., Stollewerk, K., Messelhäusser, U. & Ehling-Schulz, E. 2020. Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges. Food Microbiology 85: 103279.

Rowan, N.J. & Anderson, J.G. 1997. Maltodextrin stimulates growth of Bacillus cereus and synthesis of diarrheal enterotoxin in infant milk formulae. Applied Environmental Microbiology 63(3): 1182-1184.

Ryan, P.A., McMillan, J.D. & Zilinskas, B.A. 1997. Molecular cloning and characterization of the genes encoding the L1 and L2 components of haemolysin BL from Bacillus cereus. Journal of Bacteriology 179(8): 2551-2556.

Saleh, M., Al Nakib, M., Doloy, A., Jacqmin, S., Ghiglione, S., Verroust, N., Poyart, C. & Ozier, Y. 2012. Bacillus cereus, an unusual cause of fulminant liver failure: Diagnosis may prevent liver transplantation. Journal of Medical Microbiology 61(Pt 5): 743-745.

Salvetti, S., Faegri, K., Ghelardi, E., Kolstø, A.B. & Senesi, S. 2011. Global gene expression profile for swarming Bacillus cereus bacteria. Applied and Environmental Microbiology 77(15): 5149-5156.

Sastalla, I., Fattah, R., Coppage, N., Nandy, P., Crown, D., Pomerantsev, A.P. & Leppla, S.H. 2013. The Bacillus cereus Hbl and Nhe tripartite enterotoxin components available assemble sequentially on the surface of target cells and are not interchangeable. PLoS ONE 8(10): e76955.

Schoeni, J.L. & Wong, A.C.L. 1999. Heterogeneity observed in the components of hemolysin BL, an enterotoxin produced by Bacillus cereus. International Journal of Food Microbiology 53(2-3): 159-167.

Setlow, P. 2014. Germination of spores of Bacillus species: What we know and do not know. Journal of Bacteriology 196(7): 1297-1305.

Shaheen, R., Andersson, M.A., Apetroaie-Constantin, C., Schulz, A., Ehling-Schulz, M., Ollilainen, M. & Salkinoja-Salonen, M. 2006. Potential of selected infant food formulas for production of Bacillus cereus emetic toxin, cereulide. International Journal of Food Microbiology 107(3): 287-294.

Soni, A., Oey, I., Silcock, P. & Bremer, P. 2016. Bacillus spores in the food industry: A review on resistance and response to novel inactivation technologies. Comprehensive Reviews in Food Science and Food Technology 15(6): 1139-1148.

Sutherland, A.D. & Limond, A.M. 1993. Influence of pH and sugars on the growth and production of diarrheagenic toxin by Bacillus cereus. Journal of Dairy Research 60(2-3): 575-580.

Svensson, B., Monthán, A., Guinebretière, M.H., Nguyen-thé, C. & Christiansson, A. 2007. Toxin production potential and the detection of toxin genes among strains of the Bacillus cereus group isolated along the dairy production chain. International Dairy Journal 17(10): 1201-1208.

Tewari, A., Singh, S.P. & Singh, R. 2015. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. Journal of Food Science Technology 52(3): 1796-1801.

Tian, S., Xiong, H., Geng, P., Yuan, Z. & Hu, X. 2019. CesH represses cereulide synthesis as an alpha/beta fold hydrolase in Bacillus cereus. MDPI Toxins 11(4): 231.

Toh, M., Moffitt, M.C., Henrichsen, L., Raftery, M., Barrow, K., Cox, J.M., Marquis, C.P. & Neilan, B.A. 2004. Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. Journal of Applied Microbiology 97(5): 992-1000.

Tran, S.L., Guillemet, E., Gohar, M., Lereclus, D. & Ramarao, N. 2010. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. Journal of Bacteriology 192(10): 2638-2642.

van der Voort, M., Kuipers, O.P., Buist, G., de Vos, W.M. & Abee, T. 2008. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiology 8: 62.

van Netten, P.A., van De Moosdijk, P., van Hoensel, D.A. & Perales, I. 1990. Psychrotrophic strains of Bacillus cereus producing enterotoxin. Journal of Applied Bacteriology 69(1): 73-79.

Vangoitsenhoven, R., Rondas, D., Crèvecoeur, I., D'Hertog, W., Baatsen, P., Masini, M., Andjelkovic, M., Van Loco, J., Matthys, C., Mathieu, C., Overbergh, L. & Van der Schueren, B. 2014. Foodborne cereulide causes beta-cell dysfunction and apoptosis. PLoS ONE 9(8): e104866.

Yu, S., Yu, P., Wang, J., Li, C., Guo, H., Liu, C., Kong, L., Yu, L., Wu, S., Lei, T., Chen, M., Zeng, H., Pang, R., Zhang, Y., Wei, X., Zhang, J., Wu, Q. & Ding, Y. 2020. A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Frontiers in Microbiology 10: 3043.

Zigha, A., Rosenfeld, E., Schmitt, P. & Duport, C. 2007. The redox regulator Fnr is required for fermentative growth and enterotoxin synthesis in Bacillus cereus F4430/73. Journal of Bacteriology 189(7): 2813-2824.

 

*Pengarang untuk surat-menyurat; email: effarizah@usm.my

 

 

 

sebelumnya