Sains Malaysiana 51(11)(2022): 3703-3714
http://doi.org/10.17576/jsm-2022-5111-15
Angiotensin-I-Converting Enzyme Inhibitory (ACE-I)
Peptide from Germinated Lamtoro Gung (Leucaena leucocephala ssp. glabrata (Rose) S. Zarate) Flour
(Angiotensin-I-Converting Enzyme Inhibitory (ACE-I)
Peptida daripada Percambahan Tepung Lamtoro Gung (Leucaena leucocephala ssp.
glabrata (Rose) S. Zarate))
APRILIA FITRIANI1,2, RETNO INDRATI1, YUSTINUS MARSONO1& SUPRIYADI SUPRIYADI1,*
1Department
of Food Technology and Agricultural Products, Faculty of Agricultural, Technology,
Universitas Gadjah Mada, Flora Street 1, Depok, Sleman, Special District of
Yogyakarta, 55281, Indonesia
2Food
Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jenderal Ahmad Yani Street, Banguntapan, Bantul,
Special District of Yogyakarta,
Indonesia
Diserahkan: 17 Disember 2021/Diterima: 18 Julai 2022
Abstract
Hypertension
is a significant public health problem worldwide, a leading risk factor for
cardiovascular disease and cause of premature death. Angiotensin-I-converting
enzyme (ACE) activity is one of the causes of hypertension. Lamtoro Gung has
potential as an Angiotensin-I-converting Enzyme Inhibitory (ACE-I) due to the
presence of peptide that able to inhibit its activity to prevent hypertension.
The germination process was carried out to hydrolyse storage proteins and
produce peptides that have a low molecular weight. This study investigated
ACE-I activity from Lamtoro Gung seed during germination and evaluated the blanching
effect on it. This experiment was conducted with a Completely Randomised Design
(CRD), and the factor is the differences in germination duration (0, 12, 24,
36, 48, 60, and 72 h).
Proteolytic activity and the degree of hydrolysis during germination were
studied to know the correlation between germination and ACE-I activity. The
highest ACE-I activity sample was blanched with three different durations (2,
4, and 6 s). The 48 h
germinated Lamtoro Gung had the highest ACE-I activity (70.62%). This result
was supported by the proteolytic activity (168.79 U/g protein dry matter) and
degree of hydrolysis (23.26%). Forty-eight hours of germination of Lamtoro Gung
resulted in the highest ACE-I activity. Blanching of germinated Lamtoro Gung
for 2 s could hold the ACE-I
activity, but the longer duration decreased it.
Keywords:
ACE-I; blanching; germination; Lamtoro Gung
Abstrak
Hipertensi adalah masalah kesihatan awam utama di seluruh dunia, faktor risiko utama penyakit kardiovaskular dan punca kematian pramatang. Aktiviti Angiotensin-I-converting Enzyme (ACE) adalah salah satu punca hipertensi. Lamtoro Gung berpotensi sebagai Angiotensin-I-converting
Enzyme Inhibitory (ACE-I) kerana kehadiran peptida yang mampu menghambat
aktivitinya untuk mencegah hipertensi. Proses percambahan boleh dijalankan untuk menghidrolisis protein simpanan dan menghasilkan peptida ringkas. Penyelidikan ini mengkaji aktiviti ACE-I daripada biji Lamtoro Gung semasa percambahan dan menilai kesan kukus kepadanya. Uji kaji ini dijalankan dengan Reka Bentuk Rawak Sepenuhnya (CRD) dan faktor
penelitian yang digunakan iaitu perbezaan dalam tempoh percambahan (0, 12, 24, 36, 48, 60 dan 72 jam). Aktiviti proteolitik dan tahap hidrolisis semasa percambahan dikaji untuk mengetahui perkaitan antara percambahan dan aktiviti ACE-I. Sampel aktiviti ACE-I tertinggi kemudian dikukus dengan tiga tempoh didih yang berbeza (2, 4 dan 6 s). Lamtoro Gung yang bercambah 48 jam mempunyai aktiviti ACE-I tertinggi (70.62%). Keputusan ini disokong oleh aktiviti proteolitik (168.79 U/g protein bahan kering) dan tahap hidrolisis (23.26%). Lamtoro Gung yang bercambah dan dikukus selama 2 s boleh menahan aktiviti ACE-I, tetapi tempoh yang lebih lama mengurangkannya.
Kata kunci:
ACE-I; Lamtoro Gung; pengukusan; percambahan
RUJUKAN
Aderibigbe, S.A., Adetunji, O.A. & Odeniyi, M.A.
2011. Antimicrobial and pharmaceutical properties of the seed oil of Leucaena
leucocephala (Lam.) De Wit (Leguminosae). African Journal of Biomedical
Research 14 (January): 63-68.
Ahn, C.B., Jeon,
Y.J., Kim, Y.T. & Je, J.Y. 2012. Angiotensin-I-converting enzyme (ACE)
inhibitory peptides from salmon byproduct protein hydrolysate by alcalase
hydrolysis. Process Biochemistry 47(12): 2240-2245.
https://doi.org/10.1016/j.procbio.2012.08.019
Ali, A.S. &
Elozeiri, A.A. 2017. Metabolic processes during seed germination. In Advances
in Seed Biology, Jimenez-Lopez, J.C. DOI: 10.5772/intechopen.70653
Aluko, R.E. 2015.
Structure and function of plant protein-derived antihypertensive peptides. Current
Opinion in Food Science 4(5): 44-50.
https://doi.org/10.1016/j.cofs.2015.05.002
Bamdad, F., Dokhani,
S., Keramat, J. & Zareie, R. 2009. The impact of germination and in
vitro digestion on the formation of angiotensin converting enzyme (ACE)
inhibitory peptides from lentil proteins compared to whey proteins. International
Journal of Biological and Life Science 5: 2.
Basha, S.M.M. &
Beevers, L. 1975. The development of proteolytic activity and protein degradation
during the germination of Pisum sativum L. Planta 124(1): 77-87.
https://doi.org/10.1007/BF00390070
Bower, J.A. 2013. Statistical
Methods for Food Science: Introductory Proecedures for the Food
Practitioner. 2nd ed. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118541593
Bünning, P. &
Riordan, J.F. 1983. Activation of angiotensin converting enzyme by monovalent
anions. Biochemistry 22(1): 110-116. https://doi.org/10.1021/bi00270a016
Charoenphun, N.,
Cheirsilp, B., Sirinupong, N. & Youravong, W. 2013. Calcium-binding
peptides derived from tilapia (Oreochromis niloticus) protein
hydrolysate. European Food Research and Technology 236: 57-63.
https://doi.org/10.1007/s00217-012-1860-2
Cupp-Enyard, C.
2008. Sigma’s non-specific protease activity assay - Casein as a substrate. Journal
of Visualized Experiments 19: 4-5. https://doi.org/10.3791/899
Cushman, D.W. &
Cheung, H.S. 1971. Spectrophotometric assay and properties of the
angiotensin-Converting enzyme of rabbit lung. Biochemical Pharmacology 20(7): 1637-1648. https://doi.org/10.1016/0006-2952(71)90292-9
de Castro, R.J.S.
& Sato, H.H. 2015. Biologically active peptides: Processes for their
generation, purification and identification and applications as natural
additives in the food and pharmaceutical industries. Food Research
International 74(5): 185-198. https://doi.org/10.1016/j.foodres.2015.05.013
Durak, A., Baraniak,
B., Jakubczyk, A. & Świeca, M. 2013. Biologically active peptides
obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chemistry 141(3): 2177-2183. https://doi.org/10.1016/j.foodchem.2013.05.012
Escudero, E., Mora,
L. & Toldrá, F. 2014. Stability of ACE inhibitory ham peptides against heat
treatment and in vitro digestion. Food Chemistry 161: 305-311.
https://doi.org/10.1016/j.foodchem.2014.03.117
Fan, H., Liao, W.
& Wu, J. 2018. Molecular interactions, bioavailability, and cellular
mechanisms of angiotensin-converting enzyme inhibitory peptides. Journal of
Food Biochemistry 43(1): 1-8. https://doi.org/10.1111/jfbc.12572
Fellows, P. 2000. Food
Processing Technology. 2nd ed. Woodhead Publishing Limited and CRC Press
LLC.
Fitriani, A.,
Santoso, U. & Supriyadi, S. 2021a. Conventional processing affects
nutritional and antinutritional components and in vitro protein
digestibility in Kabau (Archidendron bubalinum). International
Journal of Food Science 2021: Article ID. 3057805.
Fitriani, A.,
Supriyadi, S., Rachma, Y.A., Maharani, P., Ardianto, C., Khoirunnissa, R.,
Muzakki, W.A. & Fajarini, L.D.R. 2021b. Proses pembuatan tepung kecambah
Lamtoro Gung (Leucaena leucocephala ssp. Glabrata (Rose) S. Zarate)
sebagai antihipertensi.
Gepstein, S. &
Ilan, I. 1980. Evidence for the involvement of cytokinins in the regulation of
proteolytic activity in cotyledons of germinating beans. Plant and Cell
Physiology 21(March): 57-63.
Gonçalves, R.N.,
Duarte, S., Barbosa, G. & Silva-López, R.E. 2016. Proteases from Canavalia
ensiformis: Active and thermostable enzymes with potential of application
in biotechnology. Biotechnology Research International 2016: 3427098.
Gulewicz, P.,
Martínez-Villaluenga, C., Frias, J., Ciesiołka, D., Gulewicz, K. &
Vidal-Valverde, C. 2008. Effect of germination on the protein fraction
composition of different lupin seeds. Food Chemistry 107(2): 830-844.
https://doi.org/10.1016/j.foodchem.2007.08.087
Harifah, C.S. 2017.
Perubahan zat gizi, senyawa antigizi, serta nilai cerna protein secara in
vitro serta profil asam amino biji Lamtoro Gung (Leucaena Leucocephala) kukus dan rebus. Thesis. Universitas Gadjah Mada (Unpublished).
Harifah, C.S.,
Supriyadi, S. & Santoso, U. 2018. Antinutrient and in vitro protein
digestibility Lamtoro Gung seed Leucaena leucocephala steamed and
boiled. In Seminar Nasional PATPI 2017. pp. 539-545.
Hartree, E.F. 1972.
Determination of potein: A modification of the lowry method that gives a linear
photometric response. Analytical Biochemistry 48: 422-427.
https://doi.org/10.1007/BF01412567
Hwang, J-S. 2010.
Impact of processing on stability of angiotensin I-converting enzyme (ACE)
inhibitory peptides obtained from tuna cooking juice. Food Research
International 43(3): 902-906. https://doi.org/10.1016/j.foodres.2009.12.012
Kesari, V. &
Rangan, L. 2011. Coordinated changes in storage proteins during development and
germination of elite seeds of Pongamia pinnata, aversatile biodiesel
legume. AoB PLANTS 11(1): 1-16. https://doi.org/10.1093/aobpla/plr026
Kırmızı,
S. & Güleryüz, G. 2006. Protein mobilization and proteolytic enzyme
activities during seed germination of broad bean (Vicia faba L.). Journal
of Biosciences 61(3-4): 222-226.
Kuo, Y.H., Rozan,
P., Lambein, F., Frias, J. & Vidal-Valverde, C. 2004. Effects of different
germination conditions on the contents of free protein and non-protein amino
acids of commercial legumes. Food Chemistry 86(4): 537-545.
https://doi.org/10.1016/j.foodchem.2003.09.042
Lee, J.K., Jeon,
J-K. & Byun, H-G. 2011. Effect of angiotensin I converting enzyme
inhibitory peptide purified from skate skin hydrolysate. Food Chemistry 125(2): 495-499. https://doi.org/10.1016/j.foodchem.2010.09.039
Li, G.H., Qu, M.R.,
Wan, J.Z. & You, J.M. 2007. Antihypertensive effect of rice protein
hydrolysate with in vitro angiotensin
i-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia
Pacific Journal of Clinical Nutrition 16(SUPPL.1): 275-280. https://doi.org/10.6133/apjcn.2007.16.s1.52
Lichtenfeld, C.,
Manteuffel, R., Müntz, K., Neumann, D., Scholz, G. & Weber, E. 1979.
Protein degradation and proteolytic activities in germinating field beans (Vicia
faba L., var. minor). Biochemie Und Physiologie Der Pflanzen 174(4):
255-274. https://doi.org/10.1016/s0015-3796(17)30587-5
Mamilla, R.K. &
Mishra, V.K. 2017. Effect of germination on antioxidant and ACE inhibitory
activities of legumes. LWT - Food Science and Technology 75(1): 51-58.
https://doi.org/10.1016/j.lwt.2016.08.036
Mariod, A.A., Edris,
Y.A., Cheng, S.F. & Abdelwahab, S.I. 2012. Effect of germination periods
and conditions on chemical composition, fatty acids and amino acids of two
black cumin seeds. Acta Scientiarum Polonorum 11(4): 401-410.
Mayer, A.M. &
Poljakoff-Mayber, A. 1979. The structure of seeds and seedlings. In The
Germination of Seed. 3rd ed. New York: Pergamon Press. pp. 1-9.
https://doi.org/10.1016/B978-0-08-028853-6.50008-5
Miguel, M. &
Aleixandre, A. 2006. Antihypertensive peptides derived from egg proteins. Recent
Advances in Nutritional Sciences 136(6): 1457-1460.
Natesh, R.,
Schwager, S.L.U., Sturrock, E.D. & Acharya, K.R. 2003. Crystal structure of
the human angiotensin-converting enzyme – lisinopril complex. Nature
Publishing Group 421(1): 551-554.
Noviyanti, E.,
Supriyadi, A., Arum, L.S., Akbar, R.R. & Siswoyo, T.A. 2020. Effect of
germination on free radical scavenging activities and angiotensin i-converting
enzyme inhibitory of melinjo (Gnetum gnemon L.) seed proteins. Journal
of Microbiology, Biotechnology and Food Sciences 9(4): 809-812.
https://doi.org/10.15414/JMBFS.2020.9.4.809-812
Nursiwi, A.,
Dwikiputra, B.I., Ishartani, D. & Sari, A.M. 2019. Changes on microbial
growth during mlanding tempeh (Leucaena leucocephala) over fermentation. IOP Conference Series: Earth and Environmental Science 379(1): 1-6.
https://doi.org/10.1088/1755-1315/379/1/012001
Nursiwi, A.,
Ishartani, D., Sari, A.M. & Nisyah, K. 2018. Study on Leucaena
leocochepala seed during fermentation: Sensory characteristic and changes
on anti nutritional compounds and mimosine level. IOP Conference Series:
Earth and Environmental Science 102: 012093.
Obiazi, C.C. 2015.
Hot water enhanced germination of Leucaena leucocephala seeds in light
and dark conditions. Current Research in Agricultural Sciences 2(2):
67-72. https://doi.org/10.18488/journal.68/2015.2.2/68.2.67.72
Pebrianti, S.A., Nur
Cahyanto, M. & Indrati, R. 2019. Angiotensin I-converting enzyme (ACE)
inhibitory activity of ACE inhibitory peptides produced during the fermentation
of pigeon pea (Cajanus cajan) tempe. Journal of Indonesian Food and
Nutrition Progress 16(2): 47-52. https://doi.org/10.22146/ifnp.46921
Pertiwi, M.G.P.,
Marsono, Y. & Indrati, R. 2019. In
vitro gastrointestinal simulation of tempe prepared from Koro Kratok (Phaseolus
lunatus L.) as an angiotensin-converting enzyme inhibitor. Journal of
Food Science and Technology 57(5): 1847-1855.
https://doi.org/10.1007/s13197-019-04219-1
Puspitojati, E., Nur
Cahyanto, M., Marsono, Y. & Indrati, R. 2019. Production of
angiotensin-i-converting enzyme (ACE) inhibitory peptides during the
fermentation of jack bean (Canavalia ensiformis) tempe. Pakistan
Journal of Nutrition 18(5): 464-470.
https://doi.org/10.3923/pjn.2019.464-470
Ramakrishna, V.
& Rao, P.R. 2005. Purification of acidic protease from the cotyledons of
germinating indian bean (Dolichos lablab L. var. lignosus) seeds. African
Journal of Biotechnology 4(July): 703-707.
Ratnayani, K.,
Suter, I.K., Antara, N.S. & Putra, I.N.K. 2019. Angiotensin converting
enzyme (ACE) inhibitory activity of peptide fraction of germinated pigeon pea (Cajanus
cajan (L.) Millsp.). Indonesian Journal of Chemistry 19(4): 900-906.
https://doi.org/10.22146/ijc.37513
Sayudi, S.,
Herawati, N. & Ali, A. 2015. Potensi biji Lamtoro Gung dan biji Kedelai
sebagai bahan baku pembuatan tempe komplementasi. Journal Online Mahasiswa
Universitas Riau 2(1): 1-9.
Shutov, A.D. &
Vaintraub, I.A. 1987. Degradation of storage proteins in germinating seeds. Phytochemistry 26(6): 1557-1566.
Supriyadi, S.,
Indrati, R. & Santoso, U. 2021. Peptida bioaktif dari indigenous Indonesian
stinky bean sebagai sumber ACE-Inhibitor untuk menekan penyakit hipertensi.
Tavares, T., Del Mar
Contreras, M., Amorim, M., Pintado, M., Recio, I. & Xavier Malcata, F.
2011. Novel whey-derived peptides with inhibitory effect against
angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides 32(5):
1013-1019. https://doi.org/10.1016/j.peptides.2011.02.005
Urbano, G., Aranda,
P., Vílchez, A., Aranda, C., Cabrera, L., Porres, J.M. & López-Jurado. M.
2005. Effects of germination on the composition and nutritive value of proteins
in Pisum sativum, L. Food Chemistry 93(4): 671-679.
https://doi.org/10.1016/j.foodchem.2004.10.045
Wu, W., Yu, P.P.,
Zhang, F.Y., Che, H.X. & Jiang, Z.M. 2014. Stability and cytotoxicity of
angiotensin-i-converting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University: Science B 15(2): 143-152.
https://doi.org/10.1631/jzus.B1300239
Xiao, H.W., Pan, Z.,
Deng, L.Z., El-Mashad, H.M., Yang, X.H., Mujumdar, A.S., Gao, Z.J. & Zhang,
Q. 2017. Recent Developments and trends in thermal blanching – A comprehensive
review. Information Processing in Agriculture 4(2): 101-127.
https://doi.org/10.1016/j.inpa.2017.02.001
Zhang, Y., Pechan,
T. & Chang, S.K.C. 2018. Antioxidant and angiotensin-I converting enzyme
inhibitory activities of phenolic extracts and fractions derived from three
phenolic-rich legume varieties. Journal of Functional Foods 42: 289-297.
https://doi.org/10.1016/j.jff.2017.12.060
*Pengarang untuk surat-menyurat;
email: suprif248@ugm.ac.id