Sains Malaysiana 51(11)(2022): 3775-3784
http://doi.org/10.17576/jsm-2022-5111-21
Kesan Rawatan Termomekanik dengan Mampatan Tunggal
terhadap Mikrostruktur dan Sifat Mikromekanik Aloi Pateri Sn-0.7Cu
(Effect of Thermomechanical Treatment with Single Compression
on Microstructural and Micromechanical Properties of Sn-0.7Cu Solder Alloy)
FATEH
AMERA MOHD YUSOFF1, MARIA ABU BAKAR1,* & AZMAN JALAR1,2
1Institut Kejuruteraan Mikro dan Nanoelektronik (IMEN),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
14 Mac 2022/Diterima: 6 Julai 2022
Abstrak
Aloi pateri bebas plumbum telah digunakan secara meluas sebagai bahan
antarasambungan bagi peranti elektronik yang memberikan sambungan elektrik bagi
kebolehfungsian dan sokongan mekanik bagi integriti struktur. Rawatan
termomekanik merupakan proses metalurgi yang melibatkan gabungan rawatan terma
dan pembebanan mekanik. Kajian ini bertujuan untuk mengkaji kesan rawatan
termomekanik dengan mampatan tunggal ke atas perubahan mikrostruktur dan sifat
mikromekanik aloi pateri Sn-0.7Cu. Aloi pateri Sn-0.7Cu berbentuk bar
dipotong kepada lapan sampel berbentuk kiub dengan ukuran 6 mm (p) × 6 mm (l) ×
10 mm (t). Empat sampel yang pertama menjalani rawatan haba pada suhu 30
℃, 60 ℃, 90 ℃ dan 120 ℃ selama 20 minit, diikuti dengan
proses mampatan tunggal sebanyak 20% dan pelindapan di dalam medium air. Empat
sampel yang berikutnya hanya didedahkan pada rawatan haba sahaja, diikuti
pelindapan di dalam medium air digunakan sebagai sampel kawalan. Cerapan
mikrostruktur menunjukkan butiran yang kecil dan seragam aloi pateri Sn-0.7Cu
terbentuk dengan rawatan termomekanik mampatan tunggal pada suhu 120 °C akibat
daripada penghabluran semula butiran. Keputusan kekerasan bagi aloi pateri
Sn-0.7Cu selepas rawatan termomekanik mampatan tunggal pada suhu 120 °C telah
menunjukkan perubahan yang sedikit iaitu sebanyak 19% berbanding sampel rawatan
haba sebanyak 64%. Keputusan modulus terkurang juga menunjukkan tren yang sama
iaitu perubahan yang lebih rendah bagi sampel dengan rawatan termomekanik
mampatan tunggal pada suhu 120 °C sebanyak 52% manakala sampel rawatan haba
sebanyak 69%. Penemuan kajian ini menunjukkan bahawa kesan suhu dalam rawatan
termomekanik mampatan tunggal berupaya untuk mengubah suai mikrostruktur dan
memberikan kestabilan sifat mikromekanik aloi pateri Sn-0.7Cu berbanding dengan
rawatan haba.
Kata kunci:
Kekerasan; modulus terkurang; penghabluran semula butiran; rawatan termomekanik
mampatan tunggal; Sn-0.7Cu; ujian pelekukan nano
Abstract
Lead-free solder
alloys have been widely used as interconnection materials for electronic
devices that provide electrical connections for functionality and mechanical
support for structural integrity. Thermomechanical treatment is a metallurgical
process that involves a combination of thermal treatment and mechanical
loading. This study aimed to investigate the effect of thermomechanical
treatment with single compression on the microstructural changes and
micromechanical properties of the Sn-0.7Cu solder alloy. A bar-shaped Sn-0.7Cu
solder alloy was cut up into eight samples cube-shaped with dimensions of 6 mm
(l) × 6 mm (w) × 10 mm (h). The first four samples were subjected to heat
treatment for 20 min at 30 °C, 60 °C, 90 °C, and 120 °C, followed by single
compression of 20% and water medium. The next four samples were subjected to
heat treatment only, followed by quenching in a water medium used as control
samples. Microstructural observation shows that small and uniform grains of
Sn-0.7Cu solder alloy was formed from thermomechanical treatment with single
compression at 120 °C due to grain recrystallization. The hardness result for
Sn-0.7Cu solder alloy after thermomechanical treatment with single compression
at 120 °C has shown tiny changes of 19% as compared to heat-treated samples
with 64%. Reduced modulus results also showed the same trend whereby the lesser
changes for the thermomechanical treatment sample were about 52% while the
heat-treated sample was about 69%. The findings of this study indicate that the
temperature in thermomechanical treatment with single compression has been able
to alter the microstructure and give stability to the micromechanical
properties of Sn-0.7Cu as opposed to heat treatment.
Keywords: Grain
recrystallization; hardness; nanoindentation test; reduced modulus; single
compression thermomechanical treatment; Sn-0.7Cu
RUJUKAN
Aamir, M., Muhammad, R., Tolouei-Rad, M., Giasin, K.
& Silberschmidt, V.V. 2019. A review: Microstructure and properties of
tin-silver-copper lead-free solder series for the applications of electronics. Soldering
& Surface Mount Technology 32(2): 115-126.
Abdullah, I., Zulkifli, M.N., Jalar, A. & Ismail, R.
2018. Deformation behavior relationship between tensile and nanoindentation
tests of SAC305 lead-free solder wire. Soldering and Surface Mount
Technology 30(3): 194-202.
Bakar, M.A., Jalar, A., Wan Yusoff, W.Y., Safee, N.S.,
Ismail, A., Ismail, N., Salleh, E.M. & Ibrahim, N.S. 2019. Effect of shock
wave on micromechanical properties of SAC 0307/ENiG solder joint using
nanoindentation approach. Sains Malaysiana 48(6): 1273-1279.
Baghdadi, A.H., Rajabi, A., Selamat, N.F.M., Sajuri, Z. &
Omar, M.Z. 2019. Effect of post-weld heat treatment on the mechanical behavior
and dislocation density of friction stir welded Al6061. Materials Science
and Engineering: A 754: 728-734.
Barkov, R.Y., Mikhaylovskaya, A.V., Yakovtseva, O.A.,
Loginova, I.S., Prosviryakov, A.S. & Pozdniakov, A.V. 2021. Effects of
thermomechanical treatment on the microstructure, precipitation strengthening,
internal friction, and thermal stability of Al–Er-Yb-Sc alloys with good
electrical conductivity. Journal of Alloys and Compounds 855: 157367.
Depiver, J.A., Mallik, S. & Harmanto, D. 2021. Solder
joint failures under thermo-mechanical loading conditions - A review. Advances
in Materials and Processing Technologies 7(1): 1-26.
Fazal, M.A., Liyana, N.K., Rubaiee, S. & Anas, A. 2019. A
critical review on performance, microstructure and corrosion resistance of
Pb-free solders. Measurement: Journal of the International Measurement
Confederation 134: 897-907.
He, H., Yi, Y., Huang, S., Guo, W. & Zhang, Y. 2020.
Effects of thermomechanical treatment on grain refinement, second-phase
particle dissolution, and mechanical properties of 2219 Al alloy. Journal of
Materials Processing Technology 278: 116506.
Hu, X., Chai, L., Shen, J., Wu, H., Li, Y., Cheng, J., Luo,
J. & Yao, L. 2022. Microstructure, texture, and hardness evolution of
cold-rolled high-purity Ti sheet during annealing at 350 °C to 550 °C. Metallurgical
and Materials Transactions A: Physical Metallurgy and Materials Science 53(6): 2086-2098.
Huang, C.M., Raj, A., Osterman, M. & Pecht, M. 2020.
Assembly options and challenges for electronic products with lead-free
exemption. IEEE Access 8: 134194-134208.
Ismail, N., Jalar, A., Abu Bakar, M., Ismail, R., Safee,
N.S., Ismail, A.G. & Ibrahim, N.S. 2019. Effect of isothermal aging on
microhardness properties of Sn-Ag-Cu/CNT/Cu using nanoindentation. Sains
Malaysiana 48(6): 1267-1272.
Ismail, N., Jalar, A., Bakar, M.A. & Ismail, R. 2018.
Effect of carbon nanotube addition on the growth of intermetallic layer of
Sn-Ag-Cu solder system under thermal aging. Sains Malaysiana 47(7):
1585-1590.
Jalar, A., Bakar, M.A. & Ismail, R. 2020. Temperature
dependence of elastic–plastic properties of fine-pitch SAC 0307 solder joint
using nanoindentation approach. Metallurgical and Materials Transactions A 51(3): 1221-1228.
Jeong, M.S., Lee, D.H. & Yoon, J.W. 2022. Effect of
temperature on shear properties of Sn-3.0Ag-0.5Cu and Sn-58Bi solder joints. Journal
of Alloys and Compounds 903: 163987.
Joo, H.S., Hwang, S.K. & Im, Y.T. 2018. Effect of
thermomechanical treatment on mechanical and electrical properties of Cu-Cr-Zr
alloy in continuous hybrid process. Procedia Manufacturing 15:
1525-1532.
Kudryashova, A., Sheremetyev, V., Lukashevich, K.,
Cheverikin, V., Inaekyan, K., Galkin, S., Prokoshkin, S. & Brailovski, V.
2020. Effect of a combined thermomechanical treatment on the microstructure,
texture and superelastic properties of Ti-18Zr-14Nb alloy for orthopedic
implants. Journal of Alloys and Compounds 843: 156066.
Le, W.K., Ning, X., Ke, C.B., Zhou, M.B. & Zhang, X.P.
2019. Current density dependent shear performance and fracture behavior of
micro-scale BGA structure Cu/Sn–3.0Ag–0.5Cu/Cu joints under coupled
electromechanical loads. Journal of Materials Science: Materials in
Electronics 30(16): 15184-15197.
Lee, A., Zee, B. & Foo, F.J. 2021. Application of EBSD
study of Cu-Sn IMCs in SAC305 and Sn0.7Cu solder joints to determine the
suitability of Sn0.7Cu solder as alternative in mitigating ILD
cracks/delamination. 2021 IEEE 23rd Electronics Packaging Technology
Conference (EPTC). pp. 435-439.
Liu, G. & Ji, S. 2019. Microstructure, dynamic
restoration and recrystallization texture of Sn-Cu after rolling at room
temperature. Materials Characterization 150(December 2018): 174-183.
Lodo, K., Dalgleish, C., Patel, M. & Veitch, M. 2018. A
novel public health threat - high lead solder in stainless steel rainwater
tanks in Tasmania. Australian and New Zealand Journal of Public Health 42(1): 77-82.
Mondol, S., Kumar, S. & Chattopadhyay, K. 2019. Effect of
thermo-mechanical treatment on microstructure and tensile properties of
2219ScMg alloy. Materials Science and Engineering: A 759: 583-593.
Morando, C. & Fornaro, O. 2021. Influence of aging on
microstructure and hardness of lead-free solder alloys. Soldering and
Surface Mount Technology 33(1): 57-64.
Nabihah, A. & Nurulakmal, M. 2019. Effect of In addition
on microstructure, wettability and strength of SnCu solder. Materials Today:
Proceedings 17: 803-809.
Qin, H.B., Zhang, X.P., Zhou, M.B., Li, X.P. & Mai, Y.W.
2015. Geometry effect on mechanical performance and fracture behavior of
micro-scale ball grid array structure Cu/Sn-3.0Ag-0.5Cu/Cu solder joints. Microelectronics
Reliability 55(8): 1214-1225.
Raj, R., Shrivastava, P., Jindal, N., Alam, S.N., Naithani,
N., Padhy, M., Phani, A.S.D., Ramana, T.V.V. & Abbas, M.M. 2019.
Development and characterization of eutectic Sn-Zn, Sn-Ag, Sn-Bi and Sn-Cu
solder alloys. International Journal of Materials Research 110 (12):
1150-1159.
Rollett, A., Rohrer, G.S. & Humphreys, J. 2017. Recrystallization
and Related Annealing Phenomena. 3rd ed. Oxford: Elsevier.
Román-Ochoa, Y., Choque Delgado, G.T., Tejada, T.R., Yucra,
H.R., Durand, A.E. & Hamaker, B.R. 2021. Heavy metal contamination and
health risk assessment in grains and grain-based processed food in Arequipa
region of Peru. Chemosphere 2021: 129792.
Sonawane, P.D., Bupesh Raja, V.K. & Gupta, M. 2021.
Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI
joints on Cu substrate. Materials Today: Proceedings 46: 1101-1105.
Sonawwanay, P.D. & Raja, V.K.B. 2019. Advances in
lead-free solders. International Journal of Mechanical Engineering and
Technology (IJMET) 10(2): 520-526.
Sun, Y., Chen, P., Liu, L., Yan, M., Wu, X., Yu, C. &
Liu, Z. 2018. Local mechanical properties of Al CoCrCuFeNi high entropy alloy
characterized using nanoindentation. Intermetallics 93: 85-88.
Tang, Z., Jiang, F., Long, M., Jiang, J., Liu, H. & Tong,
M. 2020. Effect of annealing temperature on microstructure, mechanical
properties and corrosion behavior of Al-Mg-Mn-Sc-Zr alloy. Applied Surface
Science 514: 146081.
Xu, R., Liu, Y. & Sun, F. 2019. Effect of isothermal
aging on the microstructure, shear behavior and hardness of the
Sn58Bi/Sn3.0Ag0.5Cu/Cu solder joints. Results in Physics 15: 102701.
Zeng, H., Sui, H., Wu, S., Liu, J., Wang, H., Zhang, J. &
Yang, B. 2021. Evolution of the microstructure and properties of a Cu–Cr-(Mg)
alloy upon thermomechanical treatment. Journal of Alloys and Compounds 857: 157582.
Zhong, S.J., Zhang, L., Li, M.L., Long, W.M. & Wang, F.J.
2022. Development of lead-free interconnection materials in electronic industry
during the past decades: Structure and properties. Materials and Design 215: 110439.
*Pengarang untuk surat-menyurat; email: maria@ukm.edu.my