Sains Malaysiana 51(12)(2022):
4071-4085
http://doi.org/10.17576/jsm-2022-5112-16
Developing
and Mechanical Properties of Low Fired and Geopolymer Bricks from Drinking
Water Sludge with Different Contents of Added Fly Ash
(Pembangunan dan Sifat Mekanik Bata
Suhu Rendah dan Geopolimer daripada Enap Cemar Air Minuman dengan Kandungan
Berbeza Nilai Tambah Abu Terbang)
ZULFAHMI
ALI RAHMAN*, AIFAHANA SYAMIMIE MOHD SUHAIMI, WAN MOHD RAZI IDRIS
& TUKIMAT LIHAN
Department of Earth Science and
Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
12 Mac 2022/Diterima: 14 Ogos 2022
Abstract
Raw water treatment and coal-based power generation
facilities produce a high level of waste to the environment annually. A low
recycling scheme has worsened the situation and wastes usually end up in a
landfill. Further environmental degradation could be prevented by re-utilising wastes for the
production of alternative bricks. Additionally, the development of low-fired
brick from wastes can comparatively reduce energy consumption during the firing
stage. Geopolymer has successfully replaced ordinary portland
cement (OPC) without bargaining its mechanical quality. This study aimed to
investigate the effect of fly ash (FA) content and geopolymerization on
mechanical characteristics of brick developed from drinking water sludge (DWS).
A set of brick samples was fired at 500 °C while another set of
samples was prepared under a high alkaline condition to produce geopolymer
bricks. Resultantly, both sets of samples demonstrated a decrease in linear
shrinkage and increased density with more content of FA. For fired brick
samples, the water absorption decreased from 38.6% to 33.3% before rising again
at 45% of FA content. However, a continuous decrease was displayed by
geopolymer brick as FA increased. The compressive strength of fired bricks
showed a decreasing trend as FA content increased and vice versa for the
geopolymer brick. The compressive strength of geopolymer bricks increased from
1.22 MPa to 3.63 MPa at 45% of FA content. Comparatively, geopolymer bricks
demonstrated higher strength than fired bricks. These results reflect the
advantage of the incorporated wastes and geopolymerisation
in developing alternative brick for sustainable resources and a better
environment.
Keywords: Compressive strength; drinking water
sludge; fired brick; fly ash; geopolymer
Abstrak
Rawatan
air mentah dan kemudahan penjanaan kuasa berasaskan arang batu menghasilkan
tahap sisa yang tinggi kepada alam sekitar setiap tahun. Skim kitar semula yang
rendah telah memburukkan keadaan dan sisa buangan biasanya berakhir di tapak
pelupusan sampah. Kemerosotan alam sekitar selanjutnya boleh dicegah dengan
menggunakan semula bahan buangan untuk pengeluaran batu bata alternatif. Selain
itu, pembangunan bata berapi rendah daripada bahan buangan secara perbandingan
boleh mengurangkan penggunaan tenaga semasa peringkat pembakaran. Geopolimer
telah berjaya menggantikan simen portland (OPC) biasa tanpa mempertikaikan
kualiti mekanikalnya. Penyelidikan ini bertujuan untuk mengkaji kesan kandungan
abu terbang (FA) dan geopolimerisasi terhadap ciri mekanikal bata yang
dihasilkan daripada enap cemar air minuman (DWS). Satu set sampel bata dibakar
pada suhu 500 °C manakala satu set sampel lagi disediakan dalam keadaan
beralkali tinggi untuk menghasilkan bata geopolimer. Hasilnya, kedua-dua set
sampel menunjukkan penurunan dalam pengecutan linear dan peningkatan ketumpatan
dengan lebih banyak kandungan FA. Bagi sampel bata yang dibakar, penyerapan air
menurun daripada 38.6% kepada 33.3% sebelum meningkat semula pada 45% kandungan
FA. Walau bagaimanapun, penurunan berterusan ditunjukkan oleh bata geopolimer
apabila FA meningkat. Kekuatan mampatan batu bata yang dibakar menunjukkan
trend menurun apabila kandungan FA meningkat dan begitu juga sebaliknya untuk
bata geopolimer. Kekuatan mampatan bata geopolimer meningkat daripada 1.22 MPa
kepada 3.63 MPa pada 45% kandungan FA. Secara perbandingan, bata geopolimer
menunjukkan kekuatan yang lebih tinggi daripada bata yang dibakar. Keputusan
ini mencerminkan kelebihan sisa yang digabungkan dan geopolimerisasi dalam
membangunkan bata alternatif untuk sumber yang mampan dan persekitaran yang
lebih baik.
Kata kunci: Abu terbang; bata bakar; enap cemar
air minuman; geopolimer; kekuatan mampatan
RUJUKAN
Abbas, S.,
Saleem, M.A., Kazmi, S.M.S. & Munir, M.J. 2017. Production of sustainable
clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering 14:
7-14. http://dx.doi.org/10.1016/j.jobe.2017.09.008
Abed, M.J.
&Abed, H.S. 2019. Effect of partial
replacement of fly ash and expanded polystyrene waste on properties of
geopolymer concrete bricks. Journal of
Advanced Research in Applied Sciences and Engineering Technology 17(1):
85-102.
Agbede,
O.A., Oluokun, G.O., Olayemi, O.K., Jayeioba, K.F. & Oke, A.M. 2016. Impact
of firing temperature on compressive strength characteristics of lateritic
bricks. International Journal of Latest
Research in Engineering and Technology 2(10): 50-55.
Aggarwal, P., Singh, P.R. & Aggarwal, Y. 2015. Use of nano-silica in cement based materials: A review. Cogent Engineering 2(1): 1078018.
Ajam, L.,
Ouezdou, M.B., Felfoul, H.S. & El Mensi, R. 2009. Characterization of the
Tunisian phosphogypsum and its valorization in clay bricks. Construction Building Materials 23:
3240-3247.
Al Bakri,
M.M., Mohammed, H., Kamarudin, H., KhairulNiza, I. & Zarina, Y. 2011.
Review on fly ash-based geopolymer concrete without portland cement. Journal of Engineering and Technology
Research 3: 1-4.
Algamal,
Y., Khalil, N.M. & Saleem, Q.M. 2018. Usage of the sludge from water
treatment plant in brick-making industry. Journal
of Chemical Technology and Metallurgy 53(3): 504-510.
Ali Rahman,
Z., Othman, A.M., Idris, W.M.R. & Lihan, T. 2021. Kesan suhu dan bahan tambah abu terbang
terhadap pencirian mekanik bata daripada sisa rawatan air mentah. Sains Malaysiana 50(6): 1563-1575. http://doi.org/10.17576/jsm-2021-5006-05
Ali Rahman,
Z., Hamid, N.M., Rahim, S.A., Idris, W.M.R. & Lihan, T. 2016. Pencirian
mekanikal bata daripada campuran sisa rawatan air (DWS) dan abu terbang (FA). Proceedings National Geoscience Conference.
Andrew,
R.M. 2018. Global CO2 emissions from cement production. Earth System Science Data 10: 195-217.
Anyakora,
N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed-Dabo, I.A., Ibrahim, J. & Anto,
J.B. 2012. Sustainable technology - based strategy for processing water works
sludge for resource utilization. World
Journal of Engineering and Pure and Applied Sciences 2(5): 161-168.
Arshad,
M.S. & Pawade, P.Y. 2014. Reuse of natural waste material for making light
weight bricks. International Journal of
Scientific and Technology Research 3(6): 49-53.
Awab, H.,
Thnanlechumi, P.T. & Mohd Yusoff, A.R. 2012. Chaearcterization of alum
sludge for reuse and disposal. Malaysian
Journal of Fundamnetal & Applied Sciences 8(4): 251-253.
Aydin, E.,
Uygar, P.E., Atak, C.E. & Doven, A.G. 2004. The engineering properties of
high volume fly ash cement paste. 6th International Congress on
Advance in Civil Engineering, Bogazici University, Turkey 6-8 October.
Baricik, H.
& Sarier, N. 2014. Comparative study of the characteristics of nano silica,
silica fume and fly ash incorporated cement mortar. Materials Research 17(3): 570-582.
Bikkad, G.,
Sontakke, C., Janwade, B., Giri, G., Kalbhor, V. & Khandelwal, R. 2018.
Replacing the fly ash by stp dry sludge in manufacturing of fly ash bricks. International Research Journal of
Engineering and Technology 5(6): 24-27.
Bhatt, A.,
Priyadarshini, S., Mohanakrishnan, A.A., Abri, A., Sattler, M. &
Techapaphawit, S. 2019. Physical, chemical, and geotechnical properties of coal
fly ash: A global review. Case Studies in
Construction Materials 11: 1-11.
Blaszczyski,
T. & Król, M. 2017. Durability of cement and geopolimer composites. IOP
Conference Series, Material Science and Engineering p. 251. http://doi.org/10.1088/1757-899X/251/1/012005
British Standard Institution. 1990. Methods of Test for Soils for
Civil Engineering Purposes- Part 4: Compaction-Related Tests. London,
BS1377.
British Standards Institution. 1985. Specification for Clay Bricks.
London, BS 3921.
Breesem, K.M., Faris, F.G. & Abdel-Magid, I.M. 2014. Reuse of alum sludge in construction materials and concrete works: A general overview. Infrastructure University Kuala Lumpur Research Journal 2(1): 20-30.
Chiang, K.Y., Chou, P.H., Chien, K.L., Chen, J.L. & Wu, C.C. 2009.
Novel lightweight building bricks manufactured from water treatment plant
sludge and agricultural waste. Journal of Residuals Science & Technology 6(4): 185-191.
Choudhary, R., Koppala, S. & Swamiappan, S. 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies 3(2): 173-177.
Department
of Environment (DOE). 2013. Schedule Waste Inventory. Malaysia
Environmental Inventory Report 2011: 137-149.
Deraman,
R., Abdullah, A.H., Negapan, S., Hasmori, M.F., Abas, N.H. & Rahmat, M.H.
2018. Production of low thermal conductivity fired clay brick by using palm
kernel ash (PKA) as an additive material. Asian
Journal of Technical Vocational Education and Training 4: 9-15.
EN 771-1.
2005. Specification for Masonry Units-Part 1. Clay masonry units.
Eliche-Quesada,
D., Felipe-Sese, M.A., Lopez-Perez, J.A. & Infantes-Molina, A. 2017.
Characterization and evaluation of rice husk ash and wood ash in sustainable
clay matrix bricks. Ceramic International 43(1): 463-475.
Elimbi, A.,
Tchakoute, H.K. & Njopwouo, D. 2011. Effects of calcination temperature of
kaolinite clays on the properties of geopolymer cements. Construction and Building Materials 25: 2805-2812. https://doi.org/10.1016/j.conbuildmat.2010.12.055
Fungaro,
D.A. & da Siva, M.V. 2014. Utilization of water treatment plant sludge and
coal fly ash in brick manufacturing. American Journal of
Environmental Protection 2(5):
83-88. http://dx.doi.org/10.12691/env-2-5-2
Ganesan, L.
2019. Effects of curing on Class-C fly ash based geopolymer bricks. International Journal of Engineering
Research and Management 6(9): 58-61.
Haniegal,
A.M., Ramadan, M.A., Naguib, A. & Agwa, I.S. 2020. Study on properties of
clay brick incorporating sludge of watertreatment plant and agriculture waste. Case
Study in Constructon Materials 13: e00397. https://doi.org/10.1016/j.cscm.2020.e00397
Heidrich, C., Feuerborn, H-J. & Weir, A. 2013. Coal combustion products: A global perspective. World of Coal Ash Conference, Lexington, KY, USA, 22-25 April. p. 17.
Huy, S.H.
& Phuoc, H.T. 2017. Effect of fly ash content on engineering properties of
unfired building bricks. Journal of
Science and Technology 11(4): 32-36.
Joshi, R.C.
& Lohita, R. 1997. Fly Ash in Concrete: Production, Properties and Uses. Boca Raton: CRC Press.
Jovanovic,
M., Mujkanovic, A., Busatlic, N. & Selimovic, E. 2022. Partial replacement
of clay “čavka” with fly ash “stanari” in brick production. Journal of
Sustainable Technologies and Materials 2: 20-32.
Karaman, S.,
Ersahin, S. & Gunal, H. 2006. Firing temperature and firing time influence
on mechanical and physical properties of clay bricks. Journal of Scientific & Industrial Research 65: 153-159.
Khater,
H.M., Ezzat, M. & El Nagar, A.M. 2016. Engineering of low cost geopolymer building bricks applied for various
construction purposes. International Journal of Civil Engineering and
Technology 7(4): 81-99.
Kockal,
N.U., Yanuz, E. & Kul Gul, N.I. 2019. Effects of fly ash types on the
properties of geopolymer bricks. Proceedings of International 10th Concrete
Congress, Bursa, 2-4 May 2019. pp. 251-259.
Kosmatka,
S.H., Kerkhoff, B. & Panarese, W.C. 2002. Design and Control of Concrete
Mixtures. EB001, 4th ed. Skokie: Portland Cement
Assocition. p. 358.
Koshy, P.,
Ho, N., Zhong, V., Schrek, L., Koszo, S.A., Severin, E.J. & Sorrell, C.C.
2021. Fly ash utilisation in mullite fabrication: Development of novel
percolated mullite. Minerals 11: 84. https://doi.org/10.3390/min11010084
Lavanya,
B., Preet, D.K., Suganesh, S., Indrajith, R. & Ramesh, B.C. 2020.
Properties of geopolymer bricks made with flyash and GGBS. IOP Conf. Series: Materials Science and Engineering 872:
012141. http://dx.doi:10.1088/1757-899X/872/1/012141
Leiva, C.,
Areans, C., Alonso-Farina, B., Vilches, L.F., Peceno, B. & Rodriguez-Galan,
M. 2016. Characteristics of fired bricks with co-combustion fly ashes. Journal
of Building Engineering 5: 114-118. https://doi.org/10.1016/j.jobe.2015.12.001
Ling, I.H.
& Teo, D.C.L. 2011. Reuse of waste rice husk ash and expanded polystyrene
beads as an alternative raw material in lightweight concrete bricks. International Journal of Chemical and
Environmental Engineering 2(5): 328-332.
Madurwar, M.V., Ralegaonkar, R.V. & Mandavgane, S.A. 2012.
Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials 38(1): 872-878.
Mageed, A.A., Rizk, S.A. & Abu-Ali, M.H. 2011. Utilization of water treatment plants sludge ash in brick making. Journal of Engineering Sciences 39(1): 195-206.
Mane, S.
& Jadha, H.S. 2012. Investigation of geopolymer mortar and concrete under
high temperature. International Journal of Emerging and Advanced Engineering 2(12): 384-390.
Michael,
T. 2007. Optimizing the use of fly ash in concrete. Civil Engineering Journal pp. 1-24.
More, A.,
Tarade, A. & Anant, A. 2014. Assessment of suitability of fly ash and rice
husk ash burnt clay bricks. Int. J. Sci.
Res. Publ. 4(7): 1-6.
Muduli,
S.D., Nayak, B.D. & Mishira, B.K. 2014. Geopolymer fly ash building brick
by atmospheric curing. International Journal of Chemical Sciences 12(3):
1086-1094.
Muhamad
Bashar, N.A., Zubir, Z.H., Ayob, A. & Alias, S. 2016. Water treatment
sludge as an alternative liner for landfill site: FTIR and XRD analysis. AIP
Conference Proeedings 1774: 030026. https://doi.org/101063/1.4965082
Ngo, S.H.
2020. Evaluation of the engineering properties of fly ash-based geopolymer
bricks. International Journal of Civil
Engineering and Technology 11(2): 43-51.
O’Kelly,
B.C. 2008. Geotechnical properties of a municipal water treatment sludge
incorporating a coagulant. Canadian
Geotechnical Journal 45(5): 715-725.
Oliveira,
E.M.S., Sampaio, V.G. & Holanda, J.N.F. 2006. Evaluation of the suitability
of municipal waterworks waste as a raw material for red ceramic brick
production. Industrial Ceramics 26: 23-28.
Pawar, A.S.
& Garud, D.NB. 2014. Engineering properties of clay brick with use of fly
ash. Intl. Journal of Research in
Engineering and Technology 3(9): 75-80.
Oyejobi, D.O., Abdulkadir, T.S. & Ahmed, A.T. 2016. A study of partial replacement of cement with palm oil fuel ash in concrete production. Journal of Agricultural Technology 12(4): 619-631
Ramadan,
O.M., Fouad, A.H. & Hassanain, M.A. 2008. Reuse of water treatment plant sludge in brick manufacturing. Journal
of Applied Sciences Research 4(10): 1223-1229.
Rodriguez,
J. 2021. Uses, Benefits and Drawbacks of Fly Ash in Construction - The Pros
and Cons of using Fly Ash in Your Concrete (https://www.thebalancesmb.com/fly-ash-applications-844761)
Rodriguez,
E.D., Bernal, S.A., Provis, J.L., Jordi, P., Monzo, J.M. & Borrachero, M.V.
2013. Effect of nanosilica-based activators on the performance of an
alkali-activated fly ash binder. Cement
and Concrete Composites 35: 1-11. https://doi.org/10.1016/j.cemconcomp.2012.08.025
Sarabian-Guarin, A., Sanchez-Molina, J. &
Bermudez-Carrillo, J.C. 2020. Effect of use residual sludge from water
treatment plants as a partial substitute for clay for refractory bricks
production. Revista UIS Ingenierias 20(1): 11-22. https://doi.org/10.18273/revuin.v20n1-2021002
Saravanan,
G., Jeyasehar, C.A. & Kandasamy, S. 2013. Fly ash based geopolymer
concrete-a state of the art review Journal of Engineering Science and Technology
Review 6(1): 25-32.
Schneider,
H., Schreuer, J. & Hildmann, B. 2008. Structure and properties of mullite-A
review. J. Eur. Ceram. Soc. 28:
329-344. https://doi.org/10.1016/j.jeurceramsoc.2007.03.017
Srinivasan, K. & Sivakumar, A. 2013. Geopolymer binders: A need for future concrete construction. ISRN Polymer Science 2013: 509185.
Sukmak, P.,
Horpibulsuk, S., Shen, S.L., Chindaprasirt & Suksiripattanapong, C. 2013.
Factor influencing strength development in clay-fly ash geopolymer. Construction
of Building Materials 47: 1125-1136. https://doi.org/10.1016/j.conbuildmat.2013.05.104
Sutcu, M.,
Erdogmus, E., Gencel, O., Gholampour, A., Atan, E. & Ozbakkaloglu, T. 2019.
Recycling of bottom ash and fly ash wastes in eco-friendly clay brick
production. Journal of Cleaner Production 233: 753-764. https://doi.org/10.1016/j.jclepro.2019.06.017
Tantawy,
M.A. & Mohamed, R.S.A. 2017. Middle Eocene clay from Goset Abu Khashier:
Geological assessment and utilization with drinking water treatment sludge in
brick manufacture. Applied Clay Science 138: 114-124. http://dx.doi.org/10.1016/j.clay.2017.01.005
Torres, P., Hernández,
D. & Paredes, D. 2012. Productive
use of sludge from a drinking water treatment plant for manufacturing ceramic
bricks. Revista Ingeniería de
Construcción 27(3): 145-154. https://doi.org/10.4067/S0718-50732012000300003
Turkel, S. & Aksin,
E. 2012. A comparative study on the use of fly ash and phosphogypsum in the
brick production. Sadhana 37(5): 595-607.
Ukwata, A. & Mohajerani, A. 2017. Leachate analysis of green and fired-clay bricks incorporated with biosolids. Waste Management 66: 134-144.
Van Jaarsveld, J.G.S.,
Van Deventer, J.S.J. & Lukey, G.C. 2003. The characterisation of source
materials in fly ash- based geopolymers. Materials Letters 57:
1272-1280.
Vista,
R.L. 2000. Wollastonite, in Mineral Yearbook, Metals and Minerals 1998.
Vol. 1: U.S. Geological Survey, p. 83.1-83.2. https://doi.org/10.3133/mybvI
Wan
Ibrahim, W.M., Kamaruddin, H., Khairul Nizar, I. & Mustafa Al Bakri, A.M.
2013. Mechanical
performances of fly ash geopolymer bricks. Advanced
Science Letters 19(1): 186-189.
Wan
Ibrahim, W.M., Mustafa Al Bakri, A.M., Sandu, A.V., Kamaruddin, H.,
Sandu, I.G., Khairul Nizar, I., Abdul Kadir, A. & Hussain, M. 2014.
Processing and characterization of fly ash-based geopolymer bricks. Revista de Cimie 65(11): 1340-1345. https://doi.org/10.37358/Rev.Chim.1949
Yadav, S., Agnihotri, S., Gupta, S. & Tripathi, R.K. 2014. Incorporation of STP sludge and fly ash in brick manufacturing: An attempt to save the environment. International Journal of Advancements in Research & Technology 3(5): 138-144.
Yang, D.,
Xi, Z., Chen, Q. & Li, S. 2020. Mechanical properties of tunnel muck with
fly-ash geopolymer. Advances in Civil
Engineering 2020: 1-10. https://doi.org/10.1155/2020/7247134
Zain, H.,
Abdullah, M.M.A.B., Hussin, K., Ariffin, N. & Bayuaji, R. 2017. Review on
various types of geopolymer materials with the environmental impact assessment. MATEC Web of Conference 97: 1-9. http://dx.doi.org/10.1051/mateccomf/2017970121
Zhang, L.
2013. Production of bricks from waste materials - A review. Construction and Building Materials 1(47): 643-655.
Zierold,
K.M. & Odoh, C. 2020. A review on fly ash from coal-fired power plants:
Chemical composition, regulations and health evidence. Reviews on Enviromental Health 35(4): 402-418. https://doi.org/10.1515/reveh-2019-0039
*Pengarang untuk
surat-menyurat; email: zarah1970@ukm.edu.my
|