Sains Malaysiana 51(12)(2022):
4087-4098
http://doi.org/10.17576/jsm-2022-5112-17
Enhanced Catalytic Palladium
Embedded Inside Porous Silicon for Improved Hydrogen Gas Sensing
(Paladium Bermangkin Dipertingkat Terbenam di dalam Silikon Berliang untuk Pengesanan Gas Hidrogen yang Diperbaik)
ALHAN
FARHANAH ABD RAHIM1, *, NURUL SYUHADAH MOHD RAZALI1,
ROSFARIZA RADZALI1, AINOKHILAH MAHMOOD2, IRNI HAMIZA
HAMZAH1 & MOHAMED FAUZI PACKEER MOHAMED3
1Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia
2Department of Applied Science, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia
3School of Electrical and Electronic
Engineering, Engineering Campus, Universiti Sains
Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Diserahkan: 13 April 2022/Diterima:
20 Ogos 2022
Abstract
In this work, we reported on room
temperature porous silicon (PS) and embedding PS using simple and economical
techniques of electrochemical etching and thermal evaporation. The PS substrate
was prepared using the technique of electrochemically etching the n-type Si
(100) wafer at a constant current density of 10 mA/cm2 for 10 min
under the illumination of incandescent white light. After PS formation, Ge
pieces were thermally evaporated onto the two PS substrates in a vacuum
condition. This was then followed by the deposition of the ZnO layer onto the Ge/PS substrate by the same method using commercial 99.9% pure ZnO powders. The three samples were identified as PS, Ge/PS
and ZnO/Ge/PS samples, respectively. Pd finger
contacts were deposited on the PS and embedding PS (Ge/PS and ZnO/Ge/PS) to form Pd on PS hydrogen sensors using RF
magnetron sputtering. SEM and EDX suggested the presence of substantial Ge and ZnO inside the uniform circular pores for Ge/PS and ZnO/Ge/PS samples, respectively. Raman spectra showed that
good crystalline Ge and ZnO nanostructures embedded
inside the pores were obtained. For hydrogen sensing, Pd on ZnO/Ge/PS
Schottky diode exhibited a dramatic change of current after exposure to H2 as compared to PS and Ge/PS devices. It is observed that the sensitivity
increased exponentially with the hydrogen flow rate for all the sensors. The ZnO/Ge/PS showed more sensitivity towards H2 than that of PS and Ge/PS especially at high flow rate of H2 with
higher current gain (69.11) and shorter response (180 s) and recovery times (30
s).
Keywords: Ge; H2 sensor; porous
silicon; thermal evaporation; ZnO
Abstrak
Dalam kajian ini, kami melaporkan silikon berliang (PS) dan PS terbenam menggunakan teknik mudah dan murah secara elektrokimia dan penyejatan terma pada suhu bilik. Substrat PS telah disediakan menggunakan teknik pengelasan elektrokimia wafer Si
(100) jenis-n pada ketumpatan arus malar 10 mA/cm2 selama 10 minit di bawah pencahayaan cahaya putih pijar. Selepas pembentukan PS, kepingan Ge disejat secara terma ke dua substrat PS dalam keadaan vakum. Ini diikuti dengan pemendapan lapisan ZnO ke substrat Ge/PS dengan kaedah yang sama menggunakan serbuk ZnO tulen komersial 99.9%. Ketiga-tiga sampel tersebut telah dikenal pasti sebagai sampel PS, Ge/PS
dan ZnO/Ge/PS. Sentuhan berbentuk jari daripada Pd didepositkan pada PS
dan PS terbenam (Ge/PS dan ZnO/Ge/PS) untuk membentuk Pd di atas penderia hidrogen PS dengan menggunakan teknik RF magnetron terpercik.
SEM dan EDX mencadangkan kehadiran Ge dan ZnO yang besar di dalam liang bulat seragam masing-masing untuk sampel Ge/PS dan ZnO/Ge/PS.
Spektrum Raman menunjukkan bahawa struktur nano Ge dan ZnO kristal yang baik yang tertanam di dalam liang telah diperoleh. Untuk penderiaan hidrogen, Pd pada diod Schottky ZnO/Ge/PS menunjukkan perubahan dramatik arus selepas pendedahan kepada H2 berbanding dengan peranti PS dan
Ge/PS. Diperhatikan bahawa kesensitifan meningkat secara eksponen dengan kadar aliran hidrogen untuk semua sensor. ZnO/Ge/PS menunjukkan lebih kesensitifan terhadap H2 berbanding PS dan Ge/PS terutamanya pada kadar aliran tinggi H2 dengan perolehan arus yang lebih tinggi (69.11) dan tindak balas yang lebih pendek (180 s) dan masa pemulihan (30 s).
Kata kunci: Ge; penderia H2; penyejatan terma; silikon berliang; ZnO
RUJUKAN
Abd Rahim, A.F., Hashim, M.R., Rusop, M., Ali, N.K.
& Yusuf, R. 2012. Room temperature Ge and ZnO embedded inside porous
silicon using conventional methods for photonic application. Superlattices and Microstructures 52(5):
941-948.
Al-Hardan, N.H., Abdullah,
M.J. & Abdul Aziz, A. 2010. Sensing mechanism of hydrogen gas sensor based
on RF-sputtered ZnO thin films. International
Journal of Hydrogen Energy 35(9): 4428-4434.
Alwan, A.M., Abed,
H.R. & Rashid, R.B. 2021. Enhancing the temporal response of modified
porous silicon-based CO gas sensor. Solid-State
Electronics 181-182: 108019.
Aroutiounian, V.,
Arakelyan, V., Galstyan, V., Martirosyan, K. & Soukiassian, P. 2009.
Hydrogen sensor made of porous silicon and covered by TiO2-x or
ZnO<Al> thin film. IEEE Sensors
Journal 9(1): 9-12.
Boon-Brett, L.,
Bousek, J., Black, G., Moretto, P., Castello, P., Hübert, T. & Banach, U.
2010. Identifying performance gaps in hydrogen safety sensor technology for
automotive and stationary applications. International
Journal of Hydrogen Energy 35(1): 373-384.
Cai, Z. & Park,
S. 2022. A superior sensor consisting of porous, Pd nanoparticle–decorated SnO2 nanotubes for the detection of ppb-level hydrogen gas. Journal of Alloys and Compounds 907: 164459.
Grimes, C.A., Ong,
K.G., Varghese, O.K., Yang, X., Mor, G., Paulose, M., Dickey, E.C., Ruan, C.,
Pishko, M.V., Kendig, J.W. & Mason, A.J. 2003. A sentinel sensor network
for hydrogen sensing. Sensors 3(3):
69-82.
Han, C-H., Han, S-D.
& Khatkar, S.P. 2006. Enhancement of H2-sensing properties of
F-doped SnO2 sensorby surface modification with SiO2. Sensors 6(5): 492-502.
Hérino, R. 2000.
Nanocomposite materials from porous silicon. Materials Science and Engineering: B 69-70: 70-76.
Jandow, N.N., Yam,
F.K., Thahab, S.M., Abu Hassan, H. & Ibrahim, K. 2010. Characteristics of
ZnO MSM UV photodetector with Ni contact electrodes on poly propylene carbonate
(PPC) plastic substrate. Current Applied
Physics 10(6): 1452-1455.
Jeske, M., Schultze,
J.W., Thönissen, M. & Münder, H. 1995. Electrodeposition of metals into
porous silicon. Thin Solid Films 255(1): 63-66.
Johansson, M.,
Lundström, I. & Ekedahl, L.G. 1998. Bridging the pressure gap for palladium
metal-insulator-semiconductor hydrogen sensors in oxygen containing environments. Journal of Applied Physics 84(1):
44-51.
Kanungo, J., Saha,
H. & Basu, S. 2010. Pd sensitized porous silicon hydrogen sensor -
Influence of ZnO thin film. Sensors and
Actuators B: Chemical 147(1): 128-136.
Kareem, M.H.,
Hussein, H.T. & Abdul Hussein, A.M. 2022. Study of the effect of CNTs, and
(CNTs-ZnO) on the porous silicon as sensor for acetone gas detection. Optik 259: 168825.
Kashtiban, R.J.,
Pinto, S.R.C., Bangert, U., Rolo, A.G., Chahboun, A., Gomes, M.J.M. &
Harvey, A.J. 2010. Ge nanocrystals in alumina matrix: A structural study. Journal of Physics: Conference Series 209: 012060.
Korotcenkov, G.
& Cho, B.K. 2010. Porous semiconductors: Advanced material for gas sensor
applications. Critical Reviews in Solid
State and Materials Sciences 35(1): 1-37.
Lewis, S.E., DeBoer,
J.R., Gole, J.L. & Hesketh, P.J. 2005. Sensitive, selective, and analytical
improvements to a porous silicon gas sensor. Sensors and Actuators B: Chemical 110(1): 54-65.
Mareš, J.,
Krištofik, J. & Hulicius, E. 1995. Influence of humidity on transport in
porous silicon. Thin Solid Films 255
(1): 272-275.
Meng, X., Bi, M.,
Xiao, Q. & Gao, W. 2022. Ultra-fast response and highly selectivity
hydrogen gas sensor based on Pd/SnO2 nanoparticles. International Journal of Hydrogen Energy 47(5): 3157-3169.
Mhamdi, H., Azaiez,
K., Fiorido, T., Benabderrahmane Zaghouani, R., Lazzari, J.L., Bendahan, M.
& Dimassi, W. 2022. Room temperature NO2 gas sensor based on stain-etched
porous silicon: Towards a low-cost gas sensor integrated on silicon. Inorganic Chemistry Communications 139:
109325.
Mizsei, J. 2007. Gas
sensor applications of porous Si layers. Thin
Solid Films 515(23): 8310-8315.
Naderi, N., Hashim,
M.R. & Amran. T.S.T. 2012. Enhanced physical properties of porous silicon
for improved hydrogen gas sensing. Superlattices
and Microstructures 51(5): 626-634.
Parkhutik, V. 1999.
Porous silicon - Mechanisms of growth and applications. Solid-State Electronics 43(6): 1121-1141.
Polishchuk, V.,
Souteyrand, E., Martin, J.R., Strikha, V.I. & Skryshevsky, V.A. 1998. A
study of hydrogen detection with palladium modified porous silicon. Analytica Chimica Acta 375(3): 205-210.
Rahimi, F. &
Iraji zad, A. 2007. Characterization of Pd nanoparticle dispersed over porous
silicon as a hydrogen sensor. Journal of
Physics D: Applied Physics 40(23): 7201-7209.
Rhoderick, E.H.,
Rhoderick, E.H., Williams, R.H. & Williams, R.H. 1988. Metal-Semiconductor Contacts. New York: Clarendon Press.
Wu, J., Xi, X., Zhu,
W., Yang, Z., An, P., Wang, Y., Li, Y., Zhu, Y., Yao, W. & Jiang, G. 2022.
Boosting photocatalytic hydrogen evolution via regulating Pt chemical states. Chemical Engineering Journal 442(Part
2): 136334.
*Pengarang untuk surat-menyurat;
email: alhan570@uitm.edu.my
|