Sains Malaysiana 51(1)(2022): 149-159

http://doi.org/10.17576/jsm-2022-5101-12

 

Electrochemical Degradation of Methylene Blue using Ce(Iv) Ionic Mediator in the Presence of Ag(I) Ion Catalyst for Environmental Remediation

 

(Degradasi Elektrokimia bagi Metilena Biru menggunakan Perantara Ion Ce(Iv) dengan Kehadiran Pemangkin Ion Ag(I) untuk Pemulihan Alam Sekitar)

 

 

HENRY SETIYANTO1,2*, FENI MUSTIKA SARI1, MUHAMMAD YUDHISTIRA AZIS1, RIA SRI RAHAYU1, AMMINUDIN SULAEMAN1, MUHAMMAD ALI ZULFIKAR1, DIAH RATNANINGRUM3 & VIENNA SARASWATY3

 

1Analytical Chemistry Research Group, Bandung Institute of Technology, Bandung, Indonesia

 

2Center for Defense and Security Research, Bandung Institute of Technology, Bandung, Indonesia

 

3Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia

 

Diserahkan: 14 Januari 2021/Diterima: 9 Mei 2021

 

ABSTRACT

Methylene blue (MB) is often used in textile industries and is actively present in the wastewater runs-off. Recently, mediated electrochemical oxidation (MEO) offers a fast, reliable and promising results for environmental remediation. Thus, we aimed to evaluate the electro-degradation potential of MB by MEO using Ce(IV) ionic mediator. Furthermore, we also observed the influence of addition Ag(I) ion catalyst in MEO for degradation of MB. The electro-degradation of MB was evaluated by cyclic voltammetry technique and was confirmed by UV-Vis spectrophotometry, high performance liquid chromatography (HPLC) analysis and back-titration analysis. The results showed that in the absence of Ag(I) ion catalyst, about 89 % of MB was decolorized within 30 min. When 2 mM of Ag(I) ion catalyst was applied, the electro-degradation of MB was increased to maximum value of 100%. The UV-Vis spectrum confirmed the electro-degradation of MB as suggested by decreased maximum absorbance value at λ 668 nm from 2.125 to 0.059. The HPLC analysis showed the formation of five new peaks at retention time of 1.331, 1.495, 1.757, 1.908, and 2.017 min, confirming the electro-degradation of MB. The back-titration analysis showed about 52.9% of CO2 was produced during electro-degradation of MB by MEO. More importantly, more than 97% of Ce(IV) ionic mediator were recovered in our investigation. Our results showed the potential of MEO using Ce(IV) ionic mediator to improve the wastewater runs-off quality from textile as well as other industries containing methylene blue.

 

Keywords: Ag(I); Ce(IV); ionic mediator; mediated electrochemical oxidation; methylene blue

 

 

ABSTRAK

Metilena biru (MB) sering digunakan dalam industri tekstil dan terdapat secara aktif dalam aliran air buangan. Baru-baru ini, pengoksidaan elektrokimia pengantara (MEO) menawarkan hasil yang pantas, boleh dipercayai dan menjanjikan pemulihan bagi alam sekitar. Oleh itu, potensi elektro-degradasi MB oleh MEO menggunakan perantara ion Ce(IV) dinilai. Tambahan pula, pengaruh penambahan mangkin ion Ag(I) dalam MEO untuk degradasi MB dapat dilihat. Elektro-degradasi bagi MB dinilai menggunakan teknik voltametri kitaran dan disahkan oleh spektrofotometri UV-Vis, analisis kromatografi cecair berprestasi tinggi (HPLC) dan analisis pentitratan balik. Keputusan menunjukkan bahawa dengan ketiadaan mangkin ion Ag(I), kira-kira 89% MB telah dinyahwarna dalam masa 30 minit. Apabila 2 mM mangkin ion Ag(I) digunakan, elektro-degradasi MB meningkat kepada 100%. Spektrum UV-Vis mengesahkan elektro-degradasi MB seperti yang dicadangkan oleh penurunan nilai penyerapan maksimum pada λ 668 nm daripada 2.125 kepada 0.059. Analisis HPLC menunjukkan pembentukan lima puncak baharu pada masa penahanan 1.331, 1.495, 1.757, 1.908 dan 2.017 min. Analisis pentitratan balik menunjukkan sebanyak 52.9% CO2 dihasilkan semasa elektro-degradasi MB oleh MEO. Lebih penting lagi, lebih daripada 97% perantara ion Ce(IV) telah ditemui dalam kajian ini. Keputusan ini menunjukkan tentang potensi MEO menggunakan perantara ion Ce(IV) untuk meningkatkan kualiti aliran air buangan daripada tekstil serta industri lain yang mengandungi metilena biru.

 

Kata kunci: Ag(I); Ce(IV); metilena biru; pengoksidaan elektrokimia berperantara; perantara ion

 

RUJUKAN

Alam, F.B. & Hossain, M.A. 2018. Conservation of water resource in textile and apparel industries. Journal of Polymer and Textile Engineering 5: 11-14.

Azab, S.M., Shehata, M. & Fekry, A.M. 2019. A novel electrochemical analysis of the legal psychoactive drug caffeine using a zeolite/MWCNT modified carbon paste sensor. New Journal of Chemistry 43: 15359-15367.

Bache, D.H., Hossain, M.D., Al-Ani, S.H. & Jackson, P.J. 1991. Optimum coagulation conditions for a coloured water in terms of floc size, density and strength. Water Supply 9: 93-102.

Balaji, S., Chung, S.J., Matheswaran, M. & Moon, I.L. 2007. Cerium(IV)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor. Korean Journal of Chemical Engineering 24(6): 1009-1016.

Bard, A.J., Parsons, R. & Jordan, J. 1985. Standard Potential in Aqueous Solution. Boca Raton: CRC Press. p. 834.

Bousher, A., Shen, X.D. & Edyyean, R.G.J. 1997. Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Research 31(8): 2084-2092.

Chung, Y. & Park, S.M. 2000. Destruction of aniline by mediated electrochemical oxidation with Ce(IV) and Co(III) as mediators. Journal of Applied Electrochemistry 30: 685-691.

Cuerda-Correa, E.M., Alexandre-Franco, M.F. & Fernández-González, C. 2020. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water 12(1): 102.

Ehrampoush, M.H., Moussavi, G.H.R., Ghaneian, M.T., Rahimi, S. & Ahmadian, M. 2011.  Removal of methylene blue dye from textile simulated sample using tubular reactor and TiO2/Uv-C photocatalytic process. Iranian Journal of Environmental Health Sciences & Engineering 8(1): 35-40.

Forgacs, E., Cserháti, T. & Oros, G. 2004. Removal of synthetic dyes from wastewaters: A review. Environmental International 30(7): 953-971.

Gita, S., Hussan, A. & Choudhury, T.G. 2017. Impact of textile dyes waste on aquatic environments and its treatment. Environment and Ecology 35(3C): 2349-2353.

Güyer, G.T., Nadeem, K. & Dizge, N. 2016. Recycling of pad-batch washing textile wastewater through advanced oxidation processes and its reusability assessment for Turkish textile industry. Journal of Cleaner Production 139: 488-494.

Hamdaoui, O. & Chiha, M. 2006.  Removal of methylene blue from aqueous solutions by wheat bran. Acta Chimica Slovenica 54(2): 407-418.

Hassaan, M.A. & Nemr, A.E. 2017. Health and environmental impacts of dyes: Mini review. American Journal of Environmental Science and Engineering 1(3): 64-67.

Huang, F., Chen, L., Wang, H. & Yan, Z. 2010. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma. Chemical Engineering Journal 162(1): 250-256.

Kassa, A. & Amare, M. 2019. Electrochemical determination of paracetamol, rutin and sulfonamide in pharmaceutical formulations by using glassy carbon electrode: A review. Cogent Chemistry 5(1): 1681607.

Lietzke, M.H. & Stoughton, R.W. 1957. On the solubility of Ag2SO4 in various electrolyte media. Effects of the solubility of Ag2SO4 and AgCl on the Ag, Ag2SO4 and the Ag, AgCl electrodes. Journal of the American Chemical Society 79(9): 2067-2071.

Lellis, B., Favaro-Polonio, C.Z., Pampile, J.A. & Polonio, J.C. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3(2): 275-290.

Liu, W., Ai, Z. & Zhang, L. 2012. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment. Journal Hazard Materials 243: 257-264. 

Matheswaran, M., Balaji, S., Chung, S.J. & Moon, I.S. 2007. Silver-mediated electrochemical oxidation: Production of silver (II) in nitric acid medium and in situ destruction of phenol in semi-batch process. Journal of Industrial and Engineering Chemistry 13(2): 231-236.

Matheswaran, M., Chung, S.J. & Moon, I.S. 2008. Cobalt(III)-mediated oxidative destruction of phenol using divided electrochemical cell. Korean Journal of Chemical Engineering 25(5): 1031-1035.

Möhle, S., Zirbes, M., Rodrigo, E., Gieshoff, T., Wiebe, A. & Waldvogel, S.R. 2018. Modern electrochemical aspects for the synthesis of value-added organic products. Angewandte Chemie 57(21): 6018-6041.

Murali, K. & Uma, R.N. 2016. Removal of basic dye (methylene blue) using low cost biosorbent: Water hyacinth. International Journal of Advanced Engineering Technology 7(2): 386-391.

Muslim, M.S., Setiyanto, H. & Zulfikar, M.A. 2018. Electrodegradation of nonylphenol ethoxylate (NPE-10) with silver ion catalyzed cerium (IV) in sulfuric acid medium. In The 8th Annual Basic Science International Conference, Malang, Indonesia. pp. 85-92.

Palanisami, N., Chung, S.J. & Moon, I.S. 2015. Cerium(IV)-mediated electrochemical oxidation process for removal of polychlorinated dibenzo-p-dioxins and dibenzofurans. Journal of Industrial and Engineering Chemistry 28: 28-31.

Panizza, M. & Cerisola, G. 2009. Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews 109(12): 6541-6569.

Panizza, M. & Cerisola, G. 2008. Electrochemical degradation of methyl red using BDD and PbO2 anodes. Industrial & Engineering Chemistry Research 47: 6816-6820.

Panizza, M., Barbucci, A., Ricotti, R. & Cerisola, G. 2007. Electrochemical degradation of methylene blue. Separation and Purification Technology 54(3): 382-387.

Paulenova, A., Creager, S.E., Navratil, J.D. & Wei, Y. 2002.  Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions.  Journal of Power Sources 109(2): 431-438.

Ren, X. & Wei, Q. 2011. A simple modeling study of the Ce(IV) regeneration in sulfuric acid solutions. Journal of Hazardous Materials 192(2): 779-785.

Reza, K.M., Kurny, A. & Gulshan, F. 2016. Photocatalytic degradation of methylene blue by magnetite + H2O2 + UV process. International Journal of Environmental Science & Development 7(5): 325-329.

Setiyanto, H., Rahmadhani, S., Sukandar, S., Saraswaty, V., Zulfikar, M.A. & Mufti, N. 2020. The performance of molecularly imprinted polymers (MIPs)-modified carbon paste electrode and its application in detecting phenol. International Journal of Electrochemical Science 15: 5477-5486.

Setiyanto, H., Adyatmika, I.M., Muslim, M.S., Zulfikar, M.A. & Buchari, B. 2018. Mediated electrochemical oxidation (MEO) process: A study on nonylphenol ethoxylates (NPE) oxidation in batch mode using cerium (IV) oxidant. Journal of Physics: Conference Series 1013: 012201.

Setiyanto, H., Agustina, D., Zulfikar, M.A. & Saraswaty, V. 2016. Study on the fenton reaction for degradation of remazol red B in textile waste industry. Molekul 11(2): 168-179.

Setiyanto, H., Saraswaty, V., Hertadi, R., Noviandri, I. & Buchari, B. 2011. Chemical reactivity of chlorambucil in organic solvents: Influence of 4-chloro butyronitrile nucleophile to voltammogram profiles. International Journal of Electrochemical Science 6: 2090-2100.

Shestakova, M. & Sillanpää, M. 2017. Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Reviews in Environmental Science and Bio/Technology 16: 223-238.

Singh, K., Kumar, P.  & Srivastava, R. 2017.  An overview of textiles dyes and their removal techniques: Indian perspective. Pollution Research 36(4): 790-797.

Sivagami, K., Sakhthivel, K.P. & Nambi, I.M. 2018. Advanced oxidation processes for the treatment of tannery wastewater. Journal of Environmental Chemical Engineering 6(3): 3656-3663.

Song, P., Yang, Z., Zeng, G., Yang, X., Xu, H., Wang, L., Xu, R., Xiong, W. & Ahmad, K. 2017. Electrocoagulation treatment of arsenic in wastewaters: A comprehensive review. Chemical Engineering Journal 317: 707-725.

Teng, X., Li, J., Wei, Z., Chen, C., Du, K., Zhao, C., Yang, G. & Li, Y. 2020. Performance and mechanism of methylene blue degradation by an electrochemical process. RSC Advances 10: 24712-24720.

Umoren, S.A., Etim, U.J. & Israel, A.U. 2013. Adsorption of methylene blue from industrial effluent using poly (vinyl alcohol). Journal of Materials and Environmental Science 4(1): 75-86.

Xie, Z., Xiong, F. & Zhou, D. 2011. Study of the Ce3+/Ce4+ redox couple in mixed-acid media (CH3SO3H and H2SO4) for redox flow battery application. Energy Fuels 25(5): 2399-2404.

Yaseen, D.A. & Scholz, M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology 16: 1193-1226.

Zhou, L., Song, W., Chen, Z. & Yin, G. 2013.  Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology 47(8): 3833-3839.

 

*Pengarang untuk surat-menyurat; email: henry@chem.itb.ac.id

 

 

   

sebelumnya