Sains Malaysiana 51(8)(2022): 2473-2493

http://doi.org/10.17576/jsm-2022-5108-11

 

Mesoporous Silica Nanoparticle-Templated Ionic Liquid as a Drug Carrier for Ibuprofen and Quercetin

(Nanozarah Silika Mesoliang Templat Cecair Ion sebagai Pembawa Ubat untuk Ibuprofen dan Kuersetin)

 

NAJIHAH RAMELI1, KHAIRULAZHAR JUMBRI1,2,*, ANITA RAMLI1, ROSWANIRA ABDUL WAHAB3, HASLINA AHMAD4 & MOHD BASYARUDDIN ABDUL RAHMAN4

 

1Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

2Centre of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

3Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Johor Darul Takzim, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 13 Disember 2021/Diterima: 4 Mac 2022

 

Abstract

In this study, a series of mesoporous silica nanoparticle (MSN) was successfully synthesized using different ionic liquids (ILs) as a template. Five ILs and a surfactant with different alkyl side chains and types of anion namely 1-dodecyl-3-methylimidazolium iodide ([C12mim][I]), 3-diethylamino propanol vanillate (DV), 2-butylamino ethanol salicylate (BS), 3-diethylamino propanol salicylate (DS), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][NTf2]) and hexadecyltrimethylammonium bromide (CTAB) were used. All MSNs produced have broad peaks, indicating mesoporous silica in amorphous form as observed by XRD while the morphology of MSN showed the agglomeration of particles and due to parallel arrangement pores size in both for FESEM and HRTEM. The MSNs are amorphous and displayed Type IV BET isotherm with H2 hysteresis loops which is a typical isotherm for mesoporous materials and the highest surface area obtained was 638 m2/g. The study on uptake and release of ibuprofen and quercetin were carried out, where ibuprofen showed higher drug uptake compared to quercetin due to better interaction of MSN with drug molecules. The drug release conducted at 48 h indicates 33.1% of ibuprofen and 38.4% quercetin released. It can be indicated that MSN-BS is the best for drug loading and release. Drugs release kinetics study indicated that the release process follows the Korsmeyer peppes model. The best efficiency of drug loading for MSN-BS/IBU and MSN-BS/QUE was at 48 h and 25 °C with 250 rpm stirring rate for both IBU and QUE, respectively.

 

Keywords: Drug delivery; ibuprofen; ionic liquids; mesoporous silica; quercetin

 

ABSTRAK

Dalam kajian ini, satu siri nanozarah silika mesoliang (MSN) telah berjaya disintesis daripada cecair ion (IL) yang berbeza sebagai templat. Lima jenis IL dan surfaktan dengan rantai sisi alkil dan jenis anion yang berbeza iaitu 1-dodesil-3-metilimidaolium iodida ([C12mim] [I]), 3-dietilamino propanol vanilla (DV), 2-butilamino etanol salsilat (BS), 3-diethilamino propanol salisilat (DS), 1-butil-3-metilimidaolium bis (triflorometilsulfanol) imida ([bmim] [NTf2]) dan heksadesiltrimetilammonium bromida (CTAB) telah digunakan. Semua MSN yang dihasilkan mempunyai puncak yang luas, hal ini menunjukkan kehadiran silika dalam bentuk amorfus seperti yang diperhatikan oleh XRD, sementara morfologi MSN mendedahkan bahawa penggumpalan zarah adalah disebabkan oleh saiz nanozarah MSN itu sendiri dan saiz liang yang mempunyai susunan selari telah disahkan oleh FESEM dan HRTEM. MSN ini adalah amorfus dan menunjukkan BET isoterma jenis IV dengan gelung histeresis H2 iaitu jenis isoterma yang sering dikaitkan dengan bahan mesoliang dan luas permukaan tertinggi dicapai adalah 638 m2/g. Kajian melibatkan penyerapan dan pelepasan ibuprofen dan kuersetin telah dijalankan, yang mana menunjukkan ibuprofen mempunyai penyerapan ubat yang lebih tinggi berbanding kuersetin disebabkan oleh interaksi yang lebih baik antara MSN dengan molekul ubat. Pelepasan ubat telah dilaksanakan selama 48 jam menunjukkan hanya 33.1% ibuprofen dan 38.4% kuersetin berjaya dilepaskan. Hasil kajian ini menunjukkan bahawa MSN BS merupakan pembawa ubat yang baik untuk ibuprofen. Kajian kinetik berkenaan pelepasan ubat mendedahkan proses pelepasan adalah mematuhi model Korsemeyerpoppes. Kecekapan pemuatan ubat terbaik bagi MSN-BS/IBU dan MSN-BS/QUE adalah pada 48 jam dan 25 °C dengan kadar pengadukan 250 rpm untuk IBU dan QUE.

 

Kata kunci: Cecair ion; ibuprofen; kuersetin; penghantaran dadah; silika mesoporus

 

RUJUKAN

Ab Wab, H.A., Abdul Razak, K. & Zakaria, N.D. 2014. Properties of amorphous silica nanoparticles colloid drug delivery system synthesized using the micelle formation method. Journal of Nanoparticle Research 16(2): 2256.

Ahmad, N.A., Jumbri, K., Ramli, A., Ahmad, H., Rahman, M.B.A. & Wahab, R.A. 2020. Design and molecular modelling of phenolic-based protic ionic liquids. Journal of Molecular Liquids 308: 113062.

Ahmad, H., Zaharudin, N.S., Majid, N.N.A., Jumbri, K. & Rahman, M.B.A. 2019a. Synthesis and characterization of new choline-based ionic liquids and their antimicrobial properties. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 54(2): 124-132.

Ahmad, N.A., Jumbri, K., Ramli, A., Ghani, N. & Ahmad, H. 2019b. Salicylate-based protic ionic liquids as a potential antioxidant. Malaysian Journal of Analytical Sciences 23(3): 383-389.

Beltrán-Osuna, Á.A., Gómez Ribelles, J.L. & Perilla, J.E. 2017. A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research 19(12): 381.

Bharti, C., Nagaich, U., Pal, A.K. & Gulati, N. 2015. Mesoporous silica nanoparticles in target drug delivery system: A review. International Journal of Pharmaceutical Investigation 5(3): 124-133.

Cammarata, L., Kazarian, S.G., Salter, P.A. & Welton, T. 2001. Molecular states of water in room temperature ionic liquids. Physical Chemistry Chemical Physics 3(23): 5192-5200.

Carcouët, C.C.M.C., Van De Put, M.W.P., Mezari, B., Magusin, P.C.M.M., Laven, J., Bomans, P.H.H., Friedrich, H., Esteves, A.C.C., Sommerdijk, N.A.J.M., Van Benthem, R.A.T.M. & De With, G. 2014. Nucleation and growth of monodisperse silica nanoparticles. Nano Letters 14(3): 1433-1438.

Costa, J.A.S., De Jesus, R.A., Santos, D.O., Neris, J.B., Figueiredo, R.T. & Paranhos, C.M. 2021. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: A review. Journal of Environmental Chemical Engineering 9(3): 105259.

Gao, L., Sun, J., Zhang, L., Wang, J. & Ren, B. 2012. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery. Materials Chemistry Physics 135: 786-797.

Halamova, D. & Zelenak, V. 2012. NSAID naproxen in mesoporous matrix MCM-41: Drug uptake and release properties. Journal of  Inclusion Phenomena and Macrocyclic Chemistry 72: 15-23.

Hashemikia, S., Hemmatinejad, N., Ahmadi, E. & Montazer, M. 2015. Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. Journal of Colloid and Interface Science 443: 105-114.

Heikkila, T., Salonen, J., Tuura, J., Hamdy, M.S., Mul, G., Kumar, N., Salmi, T., Yu, D., Laitinen, L., Kaukonen, A.M., Hirvonen, J. & Lehto, V.P. 2007. Mesoporous silica material TUD-1 as a drug delivery system. International Journal of Pharmaceutics 331: 133-138.

Hong, R.Y., Li, J.H., Chen, L.L., Liu, D.Q., Li, H.Z., Zheng, Y. & Ding, J. 2009. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technology 189(3): 426-432.

Irvine, J., Afrose, A. & Islam, N. 2018. Formulation and delivery strategies of ibuprofen: Challenges and opportunities. Drug Development and Industrial Pharmacy 44(2): 173-183.

Kamarudin, N.H.N., Jalil, A.A., Triwahyono, S., Salleh, N.F.M., Karim, A.H., Mukti, R.R., Hameed, B.H. & Ahmad, A. 2013. Role of 3-aminopropyltriethoxysilane in the preparation of mesoporous silica nanoparticles for ibuprofen delivery: Effect on physicochemical properties. Microporous and Mesoporous Materials 180: 235-241.

Li, J., Wang, H., Li, H., Xu, L., Guo, Y., Lu, F., Pan, W. & Li, S. 2016. Mutual interaction between guest drug molecules and host nanoporous silica xerogel studied using central composite design. International Journal of Pharmaceutics 498(1-2): 32-39.

Li, Y. & Yang, L. 2015. Driving forces for drug loading in drug carriers. Journal of Microencapsulation 32(3): 255-272.

Li, Z., Yu, L., Dong, B., Geng, F., Zheng, L. & Li, G. 2008. Synthesis and characterization of mesoporous silica templated by amphiphilic RTILs. Journal Dispersion Science and Technology 29: 1066-1071.

Lv, X., Zhang, L., Xing, F. & Lin, H. 2016. Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Microporous and Mesoporous Materials 225: 238-244.

Maleki, A., Kettiger, H., Schoubben, A., Rosenholm, J.M., Ambrogi, V. & Hamidi, M. 2017. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. Journal of Controlled Release 262: 329-347.

Mccarthy, C.A., Ahern, R.J., Dontireddy, R., Ryan, K.B. & Crean, A.M. 2016. Mesoporous silica formulation strategies for drug dissolution enhancement: A review. Expert Opinion on Drug Delivery 13(1): 93-108.

Mohamed Isa, E.D., Mahmud, I.S., Ahmad, H. & Abdul Rahman, M.B. 2019. Dependence of mesoporous silica properties on its template. Ceramics International 45(9): 12149-12153.

Mohamed Isa, E.D., Abdul Rahman, M.B. & Ahmad, H. 2018. Monodispersed mesoporous silica nanospheres based on pyridinium ionic liquids. Journal of Porous Materials 25(5): 1439-1446.

Narayan, R., Nayak, U.Y., Raichur, A.M. & Garg, S. 2018. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 10(3): 118.

Postnova, I.V., Jen, L. & Shchipunov, Y.A. 2013. Synthesis of monolithic mesoporous silica with a regular structure (SBA-15) and macropores in neutral aqueous solution at room temperature. Colloid Journal 75: 231-233.

Quevedo, G.P., Celis, A.C., Ordonez, C.V. & Martinez, M.L.O. 2018. SBA-type mesoporous materials with cylindrical and spherical structures for the controlled loading and release of ibuprofen. Journal of Sol-Gel Science and Technology 85(2): 486-494.

Rameli, N., Jumbri, K., Ramli, A., Wahab, R. & Huyop, F. 2018. Synthesis and characterization of mesoporous silica nanoparticles using ionic liquid as template. Journal of Physics: Conference Series. IOP Publishing. 012068.

Sabbagh, F. & Muhamad, I.I.  2017. Acrylamide-based hydrogel drug delivery systems: Release of Acyclovir from MgO nanocomposite hydrogel. Journal of the Taiwan Institute of Chemical Engineers 72: 182-193.

Saptiama, I., Kaneti, Y.V., Oveisi, H., Suzuki, Y., Tsuchiya, K., Takai, K., Sakae, T., Pradhan, S., Hossain, S.A., Fukumitsu, N., Ariga, K. & Yamauch, Y. 2018. Molybdenum adsorption properties of alumina-embedded mesoporous silica for medical radioisotope production. Bulletin of the Chemical Society of Japan 91(2): 195-200.

Slowing, I.I., Vivero-Escoto, J.L., Trewyn, B.G. & Lin, V.S.Y. 2010. Mesoporous silica nanoparticles: Structural design and applications. Journal of Materials Chemistry 20(37): 7924-7937.

Sriamornsak, P., Nunthanid, J., Cheewatanakornkool, K. & Manchun, S. 2010. Effect of drug loading method on drug content and drug release from calcium pectinate gel beads. AAPS PharmSciTech 11(3): 1315-1319.

Szegedi, A., Popova, M., Goshev, I. & Mihály, J. 2011. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release. Journal of Solid State Chemistry 184(5): 1201-1207.

Vadia, N. & Rajput, S. 2011. Mesoporous material, MCM-41: A new drug carrier. Asian Journal of Pharmaceutical and Clinical Research 4(2): 44-53.

Vallet-Regí, M., Colilla, M., Izquierdo-Barba, I. & Manzano, M. 2018. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules 23(1): 47.

Wang, Y., Zhao, Q., Hu, Y., Sun, L., Bai, L., Jiang, T. & Wang, S. 2013. Ordered nanoporous silica as carrier for improved delivery of water insoluble drugs: A comparative study between three dimensional and two dimensional macroporous silica. International Journal Nanomedicine 8: 4015-4031.

Ward, A.J., Pujari, A.A., Costanzo, L., Masters, A.F. & Maschmeyer, T. 2011. Ionic liquid-templated preparation of mesoporous silica embedded with nanocrystalline sulfated zirconia. Nanoscale Research Letters 6(1): 192.

Xie, Y., Kocaefe, D., Chen, C. &  Kocaefe, Y. 2016. Review of research on template methods in preparation of nanomaterials. Journal of Nanomaterials 2302595.

Xu, Z., Ji, Y., Guan, M., Zhao, C. & Zhang, H. 2010. Preparation and characterization of L-Leucine-modified amphiprotic bifunctional mesoporous SBA-15 molecular sieve as a drug carrier for ribavirin. Applied Surface Science 256(10): 3160-3165.

Zaharudin, N.S., Mohamed Isa, E.D., Ahmad, H., Abdul Rahman, M.B. & Jumbri, K. 2020. Functionalized mesoporous silica nanoparticles templated by pyridinium ionic liquid for hydrophilic and hydrophobic drug release application. Journal of Saudi Chemical Society 24(3): 289-302.

Zhang, J., Ma, Y., Shi, F., Liu, L. & Deng, Y. 2009. Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol-gel method. Microporous and Mesoporous Materials 119(1-3): 97-103.

 

*Pengarang untuk surat-menyurat; email: khairulazhar.jumbri@utp.edu.my

 

   

 

sebelumnya