Sains Malaysiana 52(1)(2023): 129-138
http://doi.org/10.17576/jsm-2023-5201-10
Adsorption
Isotherm and Surface Analysis for the Carbonate Formation on Nano Coral-Shaped
Iron(Iii) Oxide
(Isoterma Penjerapan dan Analisis Permukaan bagi Pembentukan Karbonat di atas Ferum(Iii) Oksida Berbentuk Karang Nano)
AZIZUL HAKIM LAHURI1,*,
MOHD AMBAR YARMO2, NORAZZIZI NORDIN3, NORLIZA DZAKARIA4,
ADELINE HWONG ING ING5 & SOPHIA JELINA STANLEY KUDA5
1Department of Science and Technology, Universiti Putra Malaysia Bintulu Kampus, Nyabau Road, P.O Box 396, 97008 Bintulu, Sarawak, Malaysia
2Department of Chemical Sciences, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
4School of Chemistry and Environment, Faculty
of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah,
Negeri Sembilan Darul Khusus,
Malaysia
5Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan,
Sarawak, Malaysia
Diserahkan: 22
Mac 2022/Diterima: 25 Jun 2022
Abstract
The α-Fe2O3 was synthesized
using the hydrolysis method to obtain the nano coral-shaped morphology. The adsorption isotherm and surface analysis upon CO2 adsorption were identified. The adsorption capacity for nano coral-shaped α-Fe2O3 was measured at 8.66 cm3/g (17.00 mg/g).
Experimental data from CO2adsorption
isotherm at 25 ℃ best fits with the Freundlich isotherm model which implies the adsorption process is favorable and
the multilayer adsorption on the heterogeneous surface. A decrease in the α-Fe2O3 crystallite peaks in
the X-ray diffractogram after the CO2adsorption was
associated with the carbonate complexes species formation. IR spectra
indicate higher intensities over the CO2 exposure time of 4, 12 and 24 h, especially at absorption bands 1041 and 1627 cm-1 that corresponded to C-O and
asymmetry O-C-O stretches, respectively, for carbonate. The morphology of the
carbonate formation on nano coral-shaped α-Fe2O3 over the CO2 exposure time was analyzed using FESEM-EDX.
Although the carbonate formation was not distinct, the increment in the C
element also confirmed the capability of the α-Fe2O3 in adsorbing CO2 for a long adsorption time of 24 h.
Keywords: Adsorption
isotherm; carbonate formation; CO2 capture; hydrolysis method;
iron(III) oxide
Abstrak
α-Fe2O3 telah disintesis menggunakan kaedah hidrolisis untuk mendapatkan morfologi berbentuk nano karang. Isoterma penjerapan dan analisis permukaan terhadap penjerapan CO2 telah dikenal pasti. Keupayaan penjerapan bagiα-Fe2O3 berbentuk nano karang telah diperoleh sebanyak 8.66 cm3/g
(17.00 mg/g). Isoterma penjerapan CO2 pada 25 ℃ daripada data uji kaji paling sesuai dengan model isoterma Freundlich menunjukkan proses penjerapan adalah berlaku dengan mudah dan penjerapan lapisan berganda pada permukaan yang heterogen. Penurunan puncak kekisiα-Fe2O3 dalam difraktogram sinar X selepas penjerapan CO2 adalah dikaitkan dengan pembentukan spesies karbonat kompleks. Spektrum IR menunjukkan keamatan yang lebih tinggi terhadap masa pendedahan CO2 pada 4, 12 dan 24 jam, terutamanya pada jalur-jalur serapan bagi 1041 dan 1627 cm-1 yang masing-masing sepadan dengan regangan C-O dan O-C-O tak simetri bagi karbonat. Morfologi bagi pembentukan karbonat di atasα-Fe2O3 berbentuk nano karang terhadap masa pendedahan CO2 dianalisis menggunakan FESEM-EDX. Walaupun pembentukan karbonat adalah tidak jelas, peningkatan unsur C juga telah mengesahkan keupayaanα-Fe2O3 dalam menjerap CO2 dalam masa penjerapan yang panjang pada 24 jam.
Kata kunci: Ferum(III) oksida; isoterma penjerapan; kaedah hidrolisis; pembentukan karbonat; penjerapanCO2
RUJUKAN
Abu Tahari,
M.N., Lahuri, A.H., Ghazali, Z., Samidin,
S., Sulhadi, S.S., Dzakaria,
N. & Yarmo, M.A. 2020. Application of octadecylamine-based adsorbent on carbon dioxide capture. Materials Science Forum 1010: 367-372.
Abu Tahari,
M.N., Hakim, A., Marliza, T.S., Mohd,
N.H. & Yarmo, M.A. 2017. XRD and CO2 adsorption studies of
modified silica gel with octadecylamine. Materials Science Forum 888: 529-533.
Ammendola, P., Raganati, F. & Chirone, R. 2017. CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and
kinetics. Chemical Engineering Journal 322: 302-313.
Andrade, R.G.D., Veloso, S.R.S. & Castanheira, E.M.S. 2020. Shape anisotropic iron
oxide-based magnetic nanoparticles: Synthesis and biomedical applications. International Journal of Biomolecular
Sciences 21: 1-25.
Baltrusaitis, J., Schuttlefield, J., Zeitler, E. & Grassian,
V.H. 2011. Carbon dioxide adsorption on oxide nanoparticle surfaces. Chemical Engineering Journal 170: 471-481.
Chen, X.R., Chen, Z.M. & Liu, X.J. 2016.
Study on the preparation of nanometer α-Fe2O3 by sonochemical hydrolysis method. MATEC Web of
Conference 67: 06074.
Djomgoue, P., Siewe, M., Djoufac, E., Kenfack, P. & Njopwouo, D. 2012. Surface modification of Cameroonian
magnetite rich clay with Eriochrome Black T. Application for adsorption of nickel
in aqueous solution. Applied Surface Science 258: 7470-7479.
Hakim, A., Marliza,
T.S., Abu Tahari, M.N., Wan Isahak,
W.N.R., Yusop, M.R., Hisham, M.W.M. & Yarmo, M.A. 2016a. Studies on CO2 adsorption and
desorption properties from various types of iron oxides (FeO,
Fe2O3, and Fe3O4). Industrial
& Engineering Chemistry Research 55: 7888-7897.
Hakim, A., Marliza,
T.S., Abu Tahari, M.N., Yusop,
M.R., Hisham, M.W.M. & Yarmo, M.A. 2016b.
Development of α-Fe2O3 as adsorbent and its effect
on CO2 capture. Materials Science Forum 840: 421-426.
Hakim, A., Yarmo,
M.A., Marliza, T.S., Abu Tahari,
M.N., Samad, W.Z., Yusop, M.R., Hisham, M.W.M. & Dzakaria, N. 2016c. The influence of calcination
temperature on iron oxide (α-Fe2O3) towards CO2 adsorption prepared by simple mixing method. Malaysian Journal of Analytical
Sciences 20(6): 1286-1298.
Hakim, A., Abu Tahari, M.N., Marliza, T.S., Wan Isahak, W.N.R., Yusop, M.R.,
Hisham, M.W.M. & Yarmo, M.A. 2015a. Study of CO2 adsorption and desorption on
activated carbon supported iron oxide by temperature programmed desorption. Jurnal Teknologi (Sciences & Engineering) 77(33): 75-84.
Hakim, A., Wan Isahak, W.N.R., Abu Tahari, M.N., Yusop, M.R., Hisham, M.W.M. & Yarmo,
M.A. 2015b. Temperature programmed desorption of carbon dioxide for activated
carbon supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research 1087: 45-49.
Isokoski, K., Poteet, C.A. & Linnartz, H.
2013. Highly resolved infrared spectra of pure CO2 ice (15-75
K). Astronomy and Astrophysics 555: A85.
Kazansky, V., Borovkov, V., Serykh, A.I. & Bulow, M. 1999. First observation
of the broad-range DRIFT spectra of carbon dioxide adsorbed on NaX zeolite. Physical Chemistry Chemical Physics 1:
3701-3702.
Khdary, N.H., Ghanem, M.A., Abdesalam,
M.E. & Al-Garadah, M.M. 2018. Sequestration of CO2 using Cu nanoparticles supported on spherical and rod-shape mesoporous silica. Journal
of Saudi Chemical Society 22(3): 343-351.
Kment, S., Riboni, F., Pausova, S., Wang, L., Wang, L.Y., Han, H.K., Hubicka, Z., Krysa, J., Schmuki, P. & Zboril, R.
2017. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined
heterostructures. Chemical Society Reviews 46: 3716-3769.
Lahuri,
A.H. & Yarmo, M.A. 2022. Study of CO2 adsorption time for
carbonate species and linear CO2 formations onto bimetallic CaO/Fe2O3 by infrared spectroscopy. Sains Malaysiana 51(2): 507-517.
Lahuri, A.H., Mohd Yusuf,
A., Adnan, R., Abdul Rahim, A., Waheed Tajudeen, N.F. & Nordin, N.
2022a. Kinetics and thermodynamic modeling for CO2 capture using NiO supported activated carbon by temperature swing
adsorption. Biointerface Research in Applied Chemistry 12(3):
4200-4219.
Lahuri, A.H., Yarmo,
M.A., Abu Tahari, M.N. & Dzakaria,
N. 2022b. Adsorption isotherm analysis for CO2 capture using barium
oxide impregnated iron(III) oxide by ultrasonic-assisted synthesis. Key
Engineering Materials 908: 379-384.
Lahuri, A.H., Yarmo, M.A. & Abu Tahari, M.N. 2022c. Ultrasonic assisted synthesis of
bimetal composite strontium oxide/iron(III) oxide for the adsorption isotherm
analysis of CO2 capture. Lecture
Notes in Mechanical Engineering 175-195.
Lahuri, A.H., Adnan, R., Mansor,
M.H., Waheed Tajudeen, N.F.
& Nordin, N. 2020a. Adsorption kinetics for
carbon dioxide capture using bismuth(III) oxide impregnated on activated
carbon. Malaysian Journal of Chemistry 22(1): 33-46.
Lahuri, A.H., Michale Ling,
N.K., Abdul Rahim, A. & Nordin, N. 2020b.
Adsorption kinetics for CO2 capture using cerium oxide impregnated
on activated carbon. Acta Chimica Slovenica 67:
570-580.
Lahuri, A.H., Yarmo,
M.A., Abu Tahari, M.N., Marliza,
T.S., Tengku Saharuddin,
T.S., Mark Lee, W.F. & Dzakaria, N. 2020c. Comparative adsorption isotherm for beryllium oxide/iron (III) oxide
toward CO2 adsorption and desorption studies. Materials Science Forum 1010: 361-366.
Lahuri, A.H., Yarmo, M.A., Marliza, T.S., Abu Tahari, M.N.,
Samad, W.Z., Dzakaria, N. & Yusop,
M.R. 2017. Carbon dioxide adsorption and desorption study
using bimetallic calcium oxide impregnated on iron(III) oxide. Materials Science Forum 888: 479-484.
Lassoued, A., Dkhil, B., Gadri, A. & Ammar, S. 2017. Control of the shape and
size of iron oxide (α-Fe2O3) nanoparticles synthesized through
the chemical precipitation method. Results
in Physics 7: 3007-3015.
Lisjak, D. & Merteli,
A. 2018. Anisotropic magnetic nanoparticles: A review of their properties,
syntheses and potential applications. Progress in Materials Science 95:
286-328.
Mendoza, E.Y.M., Santos, A.S.,
Lopez, E.V., Drozd, V., Durygin,
A., Chen, J.H. & Saxena, S.K. 2019. Iron oxides as efficient sorbents for CO2 capture. Journal of Materials Research and Technology 8(3): 2944-2956.
Mohanraj, K. & Sivakumar, G.
2017. Synthesis of γ-Fe2O3 , Fe3O4 and copper doped Fe3O4 nanoparticles by sonochemical
method. Sains Malaysiana 46(10): 1935-1942.
Mutch,
G.A., Anderson, J.A., Walker, R., Cerrato, G., Morandi, S., Operti, L.
&Vega-Maza, D. 2016. In-situ infrared spectroscopy as a non-invasive
technique to study carbon sequestration at high pressure and high temperature. International
Journal of Greenhouse Gas Control 51: 126-135.
Nambo, A. 2019. Nanowire based
adsorbents/catalysts for CO2 capture and utilization. Theses and
Dissertations. University of Louisville.ThinkIR: the University
of Louisville’s Institutional Repository (Unpublished).
Qin, W.Q., Yang, C.R., Yi, R. & Gao, G.H. 2011. Hydrothermal
synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. Journal of Nanomaterials 2011: 159259.
Rashidi, N.A. & Yusup,
S. 2017. Potential
of palm kernel shell as activated carbon precursors through single stage activation technique for
carbon dioxide adsorption. Journal of Cleaner Production 168: 474-486.
Sattler, K.D. 2011. Handbook of
Nanophysics: Nanoparticles and Quantum Dots. Boca Raton: CRC Press.
Shaba, E.Y., Jacob, J.O., Tijani, J.O. &
Suleiman, M.A.T. 2021. A critical review of synthesis parameters affecting the
properties of zinc oxide nanoparticle and its application in wastewater
treatment. Applied Water Science 11(48): 1-41.
Tadic, M., Panjan, M., Tadic,
B.V., Lazovic, J., Damnjanovic, V., Kopani, M. & Kopanja, L. 2019. Magnetic properties of hematite
(α−Fe2O3) nanoparticles synthesized by sol-gel
synthesis method: The influence of particle size and particle size
distribution. Journal of Electrical Engineering 70: 71-76.
Wu, Z., Yang, S. & Wu, W. 2016. Shape
control of inorganic nanoparticles from solution. Nanoscale 8:
1237-1259.
Zhong, W.H., Li, B., Maguire, R.G., Dang,
V.T., Shatkin, J.A., Gross, G.M. & Richey,
M.C. 2012. Nanoscience
and Nanomaterials: Synthesis, Manufacturing and Industry Impacts. Pennsylvania: DEStech Publication.
*Pengarang untuk surat-menyurat; email:
azizulhakim@upm.edu.my
|