Sains
Malaysiana 52(1)(2023): 139-151
http://doi.org/10.17576/jsm-2023-5201-11
Hydrolysis of Blended Cotton/Polyester Fabric from
Hospital Waste using Subcritical Water
(Hidrolisis Kapas Campuran/Kain Poliester Buangan
dari Hospital menggunakan Air Subkritikal)
NORDIN SABLI1,2,*, SHAMSAINON
ABU TOAT1, HIROYUKI YOSHIDA1 & SHAMSUL IZHAR1
1Department of Chemical
and Environmental Engineering, Faculty of Engineering, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Institute of Advance
Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul
Ehsan, Malaysia
Diserahkan:
28 September 2021/Diterima: 19 Ogos 2022
Abstract
Currently in Malaysia, most wastes
are disposed into poorly managed systems with little or no pollution protection
measures. Large
amounts of wastes such as textiles are generated through hospitals and health
care centers. However, the improper management of these abundantly generated
wastes may pose an environmental pollution problems and fire hazard. Cotton
textile is a potential biomass for bioethanol production. Subcritical water (Sub-CW)
hydrolysis was investigated as an alternative technology for the recycling of
cotton textile waste for current health care waste management. The aim of this
study was to investigate the possibility of complete conversion of cotton
textile waste to ethanol via Sub-CW hydrolysis and fermentation. Sub-CW was carried out to facilitate the
hydrolysis of cellulose component in cotton textile (cotton 75%+polyester 25%). The
study was divided into two parts; (i) To evaluate
the subcritical water parameters
such as temperature and time to achieve maximum yield of sugars. (ii) Fermentation
of the hydrolysate obtained from Sub-CW hydrolysis to ethanol. Under Sub-CW conditions of
temperature (140 °C - 350 °C), reaction time (1-10 min) and water to cotton
ratio (3:1) showed that cotton textile treated at 280 °C for 4 min, was optimal
for maximizing yield of sugar, which was 0.213 g/g-dry sample. The quantitative
analysis by HPLC showed that the soluble carbohydrates in the water phase were
mainly composed of glucose. The obtained glucose concentration, 171 mg/L was
then fermented at 36 °C for 24 hours by Saccharomyces cerevisae (yeast)
to ethanol. Highest yield of ethanol was 0.415 g/g glucose, which was 81.2 % of
theoretical yield. Hydrolysis
with Sub-CW showed the potential to decompose the cotton textile into simple
sugar while keeping sugar degradation to minimal phase and the possibility of
complete conversion of cotton textile waste to ethanol via Sub-CW and
fermentation.
Keywords: Cellulose; cotton textile; ethanol;
fermentation; glucose; subcritical water
Abstrak
Pada masa ini di Malaysia, kebanyakan sisa
dibuang ke dalam sistem yang tidak diurus dengan baik dengan sedikit atau tiada
langkah perlindungan pencemaran. Sejumlah besar bahan buangan seperti tekstil
dijana melalui hospital dan pusat penjagaan kesihatan. Walau bagaimanapun,
pengurusan yang tidak cekap bagi sisa yang dihasilkan dengan banyak ini boleh
menimbulkan masalah pencemaran alam sekitar dan bahaya kebakaran. Tekstil kapas
adalah biojisim yang berpotensi untuk pengeluaran bioetanol. Hidrolisis air subkritikal
(Sub-CW) telah dikaji sebagai teknologi alternatif untuk mengitar semula sisa
tekstil kapas untuk pengurusan sisa penjagaan kesihatan semasa. Matlamat kajian
ini adalah untuk mengkaji kemungkinan penukaran lengkap sisa tekstil kapas
kepada etanol melalui hidrolisis dan penapaian Sub-CW. Sub-CW telah dijalankan
untuk memudahkan hidrolisis komponen selulosa dalam tekstil kapas (kapas
75%+poliester 25%). Kajian ini dibahagikan kepada dua bahagian; (i) Untuk
menilai parameter air subkritikal seperti suhu dan masa untuk mencapai hasil
maksimum gula. (ii) Penapaian hidrolisat yang diperoleh daripada hidrolisis
Sub-CW kepada etanol. Di bawah keadaan Sub-CW suhu (140 °C - 350 °C), masa
tindak balas (1-10 min) dan nisbah air kepada kapas (3:1) mendedahkan bahawa
tekstil kapas dirawat pada 280 °C selama 4 minit, adalah optimum untuk
memaksimumkan hasil gula, iaitu 0.213 g/g-sampel kering. Analisis kuantitatif
oleh HPLC menunjukkan bahawa karbohidrat larut dalam fasa air terutamanya
terdiri daripada glukosa. Kepekatan glukosa yang diperoleh, 171 mg/L kemudian
ditapai pada 36 °C selama 24 jam oleh Saccharomyces cerevisae (yis)
kepada etanol. Hasil etanol tertinggi ialah 0.415 g/g glukosa, iaitu 81.2%
daripada hasil teori. Hidrolisis dengan Sub-CW menunjukkan potensi untuk
menguraikan tekstil kapas kepada gula ringkas sambil mengekalkan degradasi gula
kepada fasa minimum dan kemungkinan penukaran lengkap sisa tekstil kapas kepada
etanol melalui Sub-CW dan penapaian.
Kata kunci: Air subkritikal; etanol; fermentasi; glukosa;
selulosa; tekstil kapas
RUJUKAN
Abaide,
E.R., Mortari, S.R., Ugalde, G., Valério, A., Amorim, S.M., Di Luccio, M., de
F.P.M. Moreira, R., Kuhn, R.C., Priamo, W.L., Tres, M.V., Zabot, G.L. &
Mazutti, M.A. 2019. Subcritical water hydrolysis of rice straw in a
semi-continuous mode. Journal of Cleaner Production 209: 386-397.
Abdelmoez, W., Nage, S.M., Bastawess, A.,
Ihab, A. & Yoshida, H. 2014. Subcritical water technology for wheat straw
hydrolysis to produce value added products. Journal of Cleaner Production 70: 68-77.
Afroz,
R., Hassan, M.N. & Ibrahim, N.A. 2003. Review of air pollution and health
impacts in Malaysia. Environmental Research 92(2): 71-77.
Aliakbarian, B., Fathi, A., Perego, P. &
Dehghani, F. 2012. Extraction of antioxidants from winery wastes using
subcritical water. The Journal of Supercritical Fluids 65: 18-24.
Baig,
M.N., Santos, R.C.D., King, J., Pioch, D. & Bowra, S. 2013. Evaluation and
modelling of continuous flow sub-critical water hydrolysis of biomass derived
components; lipids and carbohydrates. Chemical Engineering Research and
Design 91(12): 2663-2670.
Canabarro, N.I., Alessio, C., Foletto, E.L.,
Kuhn, R.C., Priamo, W.L. & Mazutti, M.A. 2017. Ethanol production by
solid-state saccharification and fermentation in a packed-bed bioreactor. Renewable
Energy 102: 9-14.
Cocero, M.J., Cabeza, Á., Abad, N., Adamovic,
T., Vaquerizo, L., Martínez, C.M. & Pazo-Cepeda, M.V. 2017. Understanding
biomass fractionation in subcritical & supercritical water. The Journal
of Supercritical Fluids 133(Part 2): 550-565.
Das, A.M., Hazarika, M.P., Goswami, M.,
Yadav, A. & Khound, P. 2016. Extraction of cellulose from agricultural
waste using montmorillonite K-10/LiOH and its conversion to renewable energy:
Biofuel by using Myrothecium gramineum. Carbohydrate Polymers 141: 20-27.
Dastjerdi,
B., Strezov, V., Kumar, R. & Behnia, M. 2019. An evaluation of the
potential of waste to energy technologies for residual solid waste in New South
Wales, Australia. Renewable and Sustainable Energy Reviews 115: 109398.
Daylan, B. & Ciliz, N. 2016. Life cycle
assessment and environmental life cycle costing analysis of lignocellulosic
bioethanol as an alternative transportation fuel. Renewable Energy 89:
578-587.
Daza Serna, L.V., Orrego Alzate, C.E. &
Cardona Alzate, C.A. 2016. Supercritical fluids as a green technology for the
pretreatment of lignocellulosic biomass. Bioresource Technology 199:
113-120.
Du, S-K., Su, X., Yang, W., Wang, Y., Kuang,
M., Ma, L., Fang, D. & Zhou, D. 2016. Enzymatic saccharification of high
pressure assist-alkali pretreated cotton stalk and structural characterization. Carbohydrate Polymers 140: 279-286.
Evcan, E. & Tari, C. 2015. Production of
bioethanol from apple pomace by using cocultures: Conversion of agro-industrial
waste to value added product. Energy 88: 775-782.
Gholamzad, E., Karimi, K. & Masoomi, M. 2014. Effective
conversion of waste polyester-cotton textile to ethanol recovery of polyester
by alkaline pretreatment. Chemical Engineering Journal 253: 40-45.
Gonçalves, D.L., Matsushika, A., de Sales,
B.B., Goshima, T., Bon, E.P.S. & Stambuk, B.U. 2014. Xylose and
xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzyme and Microbial
Technology 63: 13-20.
Govindaswamy, S. & Vane, L.M. 2010.
Multi-stage continuous culture fermentation of glucose - Xylose mixtures to
fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. Bioresource Technology 101(4): 1277-1284.
Haghighi Mood, S., Hossein Golfeshan, A.,
Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M. & Ardjmand,
M. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a
focus on pretreatment. Renewable and Sustainable Energy Reviews 27:
77-93.
Isci, A. & Demirer, G.N. 2007. Biogas
production potential from cotton wastes. Renewable Energy 32(5):
750-757.
Isik, N. & Bakir, U. 2013. Ionic liquid
pretreatment allows utilization of high substrate loadings in enzymatic
hydrolysis of biomass to produce ethanol from cotton stalks. Industrial
Crops & Products 51: 408-414.
Jeihanipour, A. & Taherzadeh, M.J. 2009.
Ethanol production from cotton-based waste textiles. Bioresource Technology 100(2): 1007-1010.
Kathirvale,
S., Noor, M., Yunus, M., Sopian, K. & Halim, A. 2003. Energy potential from
municipal solid waste in Malaysia. Renewable Energy 29: 559-567.
Khaleghian, H., Karimi, K. & Behzad, T.
2015. Ethanol production from rice straw by sodium carbonate pretreatment and Mucor
hiemalis fermentation. Industrial Crops and Products 76: 1079-1085.
Kirmizakis, P., Tsamoutsoglou, C., Kayan, B.
& Kalderis, D. 2014. Subcritical water treatment of land fill leachate:
Application of response surface methodology. Journal of Environmental
Management 146: 9-15.
Kumar, S., Gupta, R., Lee, Y.Y. & Gupta,
R.B. 2010. Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure
and enzymatic reactivity. Bioresource Technology 101(4): 1337-1347.
Lachos-Perez,
D., Tompsett, G.A., Guerra, P., Timko, M.T., Rostagno, M.A., Martínez, J. &
Forster-Carneiro, T. 2017. Sugars and char formation on subcritical water
hydrolysis of sugarcane straw. Bioresource Technology 243: 1069-1077.
Latawiec, A.E., Swindell, A.L. & Reid,
B.J. 2008. Environmentally friendly assessment of organic compound
bioaccessibility using sub-critical water. Environmental Pollution 156(2): 467-473.
Levendis, Y.A., Atal, A., Carlson, J.B. &
Esperanza, M. 2001. PAH and soot emissions from burning components of medical
waste: Examination/surgical gloves and cotton pads. Chemosphere 42(5-7):
775-783.
Liguori, R. & Faraco, V. 2016. Biological
processes for advancing lignocellulosic waste biorefinery by advocating
circular economy. Bioresource Technology 215: 13-20.
Lin,
R., Cheng, J., Ding, L., Song, W., Qi, F., Zhou, J. & Cen, K. 2015.
Subcritical water hydrolysis of rice straw for reducing sugar production with
focus on degradation by-products and kinetic analysis. Bioresource
Technology 186: 8-14.
Li, H., Kim, N.J., Jiang, M., Kang, J.W.
& Chang, H.N. 2009. Simultaneous saccharification and fermentation of
lignocellulosic residues pretreated with phosphoric acid - acetone for
bioethanol production. Bioresource Technology 100(13): 3245-3251.
Lü, X. & Saka, S. 2010. Hydrolysis of
Japanese beech by batch and semi-flow water under subcritical temperatures and
pressures. Biomass and Bioenergy 34(8): 1089-1097.
Mcintosh, S., Vancov, T., Palmer, J. &
Morris, S. 2014. Ethanol production from cotton gin trash using optimised
dilute acid pretreatment and whole slurry fermentation processes. Bioresource
Technology 173: 42-51.
Mihiretu, G.T., Brodin, M., Chimphango, A.F.,
Øyaas, K., Hoff, B.H. & Görgens, J.F. 2017. Single-step microwave-assisted
hot water extraction of hemicelluloses from selected lignocellulosic materials
- A biorefinery approach. Bioresource Technology 241: 669-680.
Mohan, M., Banerjee, T. & Goud, V.V.
2015. Hydrolysis of bamboo biomass by subcritical water treatment. Bioresource
Technology 191: 244-252.
Mohseni-Bandpei,
A., Majlesi, M., Rafiee, M., Nojavan, S., Nowrouz, P. & Zolfagharpour,
H. 2019. Polycyclic aromatic
hydrocarbons (PAHs) formation during the fast pyrolysis of hazardous
health-care waste. Chemosphere 227: 277-288.
Naffati, A., Vladi, J., Pavli, B.,
Radosavljevi, R., Gavari, A. & Vidovi, S. 2017. Recycling of filter tea
industry by-products: Application of subcritical water extraction for recovery
of bioactive compounds from A. uva-ursi herbal dust. Journal of
Supercritical Fluids 121: 1-9.
Nielsen, S.S. 2010. Phenol-sulfuric acid method for total
carbohydrates. In Food Analysis Laboratory Manual. Food Science Text Series. Boston: Springer. pp. 47-53.
Nikolić, S., Lazić, V.,
Veljović, Đ. & Mojović, L. 2017. Production of bioethanol
from pre-treated cotton fabrics and waste cotton materials. Carbohydrate
Polymers 164: 136-144.
Nørup,
N., Pihl, K., Damgaard, A. & Scheutz, C. 2019. Development and testing of a
sorting and quality assessment method for textile waste. Waste Management 79: 8-21.
Öztürk
Ilker, I., Irmak, S., Hesenov, A. & Erbatur, O. 2010. Hydrolysis of kenaf (Hibiscus
cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass and Bioenergy 34(11): 1578-1585.
Pek, C. & Jamal, O.A. 2011. Choice
experiment analysis for solid waste disposal option: A case study in Malaysia. Journal
of Environmental Management 92(11): 2993-3001.
Pourali,
O. 2009. Production of valuable materials from rice bran biomass using subcritical
water. PhD Thesis. Osaka Prefecture
University. Osaka, Japan. pp. 5-124.
Prado, J.M., Follegatti-Romero, L.A.,
Forster-Carneiro, T., Rostagno, M.A., Maugeri Filho, F. & Meireles, M.A.A. 2014. Hydrolysis of
sugarcane bagasse in subcritical water. Journal of Supercritical Fluids 86: 15-22.
Rastogi, M. & Shrivastava, S. 2017.
Recent advances in second generation bioethanol production: An insight to
pretreatment, saccharification and fermentation processes. Renewable and
Sustainable Energy Reviews 80: 330-340.
Ravber, M., Knez, Ž. & Škerget, M. 2015.
Simultaneous extraction of oil-and water-soluble phase from sunflower seeds
with subcritical water. Food Chemistry 166(1): 316-323.
Sahoo, D., Ummalyma, S.B., Okram, A.K.,
Sukumaran, R.K., George, E. & Pandey, A. 2017. Potential of Brachiaria mutica (Para grass) for bioethanol
production from Loktak Lake. Bioresource Technology 242: 133-138.
Salak, F. & Yoshida, H. 2010. Conversion
of Japanese red pine wood (Pinus densiflora) into valuable chemicals
under subcritical water conditions. Carbohydrate Research 345(1):
124-131.
Sharifah Aishah Syed Abd Kadir, Chun-Yang
Yin, Muhamad Rosli Sulaiman, Xi Chen & Mohanad El-Harbawi. 2013.
Incineration of municipal solid waste in Malaysia: Salient issues, policies and
waste-to-energy initiatives. Renewable and Sustainable Energy Reviews 24: 181-186.
Shekdar,
A.V. 2009. Sustainable solid waste management: An integrated approach for Asian
countries. Waste Management 29(4): 1438-1448.
Shen,
F., Xiao, W., Lin, L., Yang, G., Zhang, Y. & Deng, S. 2013. Enzymatic
saccharification coupling with polyester recovery from cotton-based waste
textiles by phosphoric acid pretreatment. Bioresource Technology 130:
248-255.
Shi,
H., Liu, H.C., Li, P. & Xu, X.G. 2017. An integrated decision making
approach for assessing healthcare waste treatment technologies from a multiple
stakeholder. Waste Management 59: 508-517.
Sindhu, R., Binod, P. & Pandey, A. 2016.
Biological pretreatment of lignocellulosic biomass - An overview. Bioresource
Technology 199: 76-82.
Singh,
R.P., Singh, P., Araujo, A.S.F., Hakimi Ibrahim, M. & Sulaiman, O. 2011.
Management of urban solid waste: Vermicomposting a sustainable option. Resources,
Conservation and Recycling 55(7): 719-729.
Tanaka, M., Takamizu, A., Hoshino, M.,
Sasaki, M. & Goto, M. 2012. Extraction of dietary fiber from Citrus
junos peel with subcritical water. Food and Bioproducts Processing 90(2): 180-186.
Tan,
S., Hashim, H., Lee, C., Taib, M.R. & Yan, J. 2014. Economical and
environmental impact of waste-to-energy (WTE) alternatives for waste
incineration, landfill and anaerobic digestion. Energy Procedia 61:
704-708.
Thakur,
V. & Ramesh, A. 2015. Selection of waste disposal firms using grey theory
based multi-criteria decision making technique. Procedia - Social and
Behavioral Sciences 189: 81-90.
Timung, R., Mohan, M., Chilukoti, B., Sasmal,
S., Banerjee, T. & Goud, V.V. 2015. Optimization of dilute acid and hot
water pretreatment of different lignocellulosic biomass: A comparative study. Biomass
and Bioenergy 81: 9-18.
Vani, S., Binod, P., Kuttiraja, M., Sindhu,
R., Sandhya, S.V., Preeti, V.E., Sukumaran, R.K. & Pandey, A. 2012. Energy
requirement for alkali assisted microwave and high pressure reactor pretreatments
of cotton plant residue and its hydrolysis for fermentable sugar production for
biofuel application. Bioresource Technology 112: 300-307.
Wanassi, B., Azzouz, B. & Hassen, M.B.
2016. Value-added waste cotton yarn: Optimization of recycling process and spinning
of reclaimed fibers. Industrial Crops and Products 87: 27-32.
Wang, P., Chang, J., Yin, Q., Wang, E., Zhu,
Q., Song, A. & Lu, F. 2015. Effects of thermo-chemical pretreatment plus
microbial fermentation and enzymatic hydrolysis on saccharification and
lignocellulose degradation of corn straw. Bioresource Technology 194:
165-171.
Wataniyakul, P., Pavasant, P., Goto, M. &
Shotipruk, A. 2012. Microwave pretreatment of defatted rice bran for enhanced
recovery of total phenolic compounds extracted by subcritical water. Bioresource
Technology 124: 18-22.
Wu,
M., Ya, Z., Ming, X., Xu, F. & Cang, R. 2016. Integration of mild acid
hydrolysis in γ -valerolactone/water
system for enhancement of enzymatic saccharification from cotton stalk. Bioresource
Technology 200: 23-28.
Xu, S.,
Fang, D., Tian, X., Xu, Y., Zhu, X., Wang, Y., Lei, B., Hu, P. & Ma, L.
2021. Subcritical water extraction of bioactive compounds from waste cotton (Gossypium
hirsutum L.) flowers. Industrial Crops and Products 164: 113369.
Yang, F., Li, Y., Zhang, Q., Sun, X., Fan,
H., Xu, N. & Li, G. 2015. Selective conversion of cotton cellulose to
glucose and 5-hydroxymethyl furfural with SO42−/MxOy solid superacid catalyst. Carbohydrate Polymers 131: 9-14.
Yedro,
F.M., Cantero, D.A., Pascual, M., García-Serna, J. & Cocero, M.J. 2015.
Hydrothermal fractionation of woody biomass: Lignin effect on sugars recovery. Bioresource
Technology 191: 124-132.
Yousef,
S., Tatariants, M., Tichonovas, M., Sarwar, Z., Jonuškienė, I. &
Kliucininkas, L. 2019a. A new strategy for using textile waste as a sustainable
source of recovered cotton. Resources, Conservation and Recycling 145:
359-369.
Yousef,
S., Eimontas, J., Striūgas, N., Tatariants, M., Abdelnaby, M.A., Tuckute,
S. & Kliucininkas, L. 2019b. A sustainable bioenergy conversion strategy
for textile waste with self-catalysts using mini-pyrolysis plant. Energy
Conversion and Management 196: 688-704.
Zhao, Y., Tan, H., Xu, Y. & Zou, L. 2016.
Multi-level dissolution and hydrolysis of lignocellulosic waste with a
semi-flow hydrothermal system. Bioresource Technology 214: 496-503.
Zhao,
Y., Lu, W.J., Wang, H.T. & Yang, J.L. 2009. Fermentable hexose production
from corn stalks and wheat straw with combined supercritical and subcritical
hydrothermal technology. Bioresource Technology 100(23): 5884-5889.
Zhou,
H., Long, Y., Meng, A., Li, Q. & Zhang, Y. 2015. Classification of
municipal solid waste components for thermal conversion in waste-to-energy
research. Fuel 145: 151-157.
*Pengarang untuk surat-menyurat;
email: nordin_sab@upm.edu.my
|