Sains Malaysiana 52(1)(2023):
233-244
http://doi.org/10.17576/jsm-2023-5201-19
Ethanol
Extract of Centella asiatica Improved Methamphetamine-Induced Neurotoxicity on Mouse Model via Stimulating
Superoxide Dismutase II and microRNA-34A Expression
(Ekstrak Etanol Centella asiatica Menambahbaik Keneurotoksikan Teraruh Metamfetamin pada Model Tikus melalui Superoksida Dismutase II dan Ekspresi Mikro)
NURSYAMILA SHAMSUDDIN1, MAZATULIKHMA MAT ZAIN2,
MOHD ILHAM ADENAN3 &
MOHD SHIHABUDDIN AHMAD NOORDEN1,*
1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan,
Malaysia
2Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40000 Shah Alam,
Selangor Darul Ehsan, Malaysia
3Atta-ur-Rahman Institute for Natural Product Discovery
(AuRins), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Puncak Alam, Selangor Darul Ehsan,
Malaysia
Diserahkan: 20 Mei 2022/Diterima:
23 Ogos 2022
Abstract
Neurotoxicity
induced by a psychostimulant drug, methamphetamine (METH) is associated with
devastating and persistent neurotoxicity effects on the central nervous system
(CNS). Centella asiatica(CA)
is known as an antioxidant and neuroprotective agent. However, there is a
limited study on natural-derived therapeutic to attenuate neurotoxicity induced
by METH. We aimed to investigate the effects of METH and ethanol extract CA
(CAE) on motor performance of animal model and the expression of manganese superoxide
dismutase II (SOD2) and microRNA-34a (miR-34a) in the brain tissue. Male Sprague-Dawley rats were
administered with METH (50 mg/kg per body weight) twice per day for 4 days, CAE
(300 mg/kg & 500 mg/kg per body weight for 21 days and combination of METH
and CAE for 21 day(s). Weight of rat was measured and motor performance was
evaluated using vertical pole and narrow beam tests. Expression of SOD2 and
miR-34a were measured using Quantitative Real-time Polymerase Chain Reaction
(RT-qPCR). Group III
(300 mg/kg CAE); p<0.001, Group IV (500 mg/kg CAE); p<0.001, Group V
(METH+300 mg/kg CAE); p<0.01 and Group VI (METH+500 mg/kg CAE); p<0.01 significantly improved latency in the
vertical pole test compared to METH group. Meanwhile, Group III (300 mg/kg CAE); p<0.001
and Group IV (500 mg/kg CAE); p<0.001 significantly
decreased latency in the narrow beam test compared to METH. Post-treatment of
CAE on METH-treated rats, Group
V (METH+300 mg/kg CAE) and Group VI (METH+500 mg/kg CAE) non-significantly upregulated the SOD2
expression by 3.78±1.03 and 4.05±0.19 folds compared to METH, respectively.
Post-treatment of CAE on METH-treated rats, Group V (METH+300 mg/kg CAE) and Group VI (METH+500
mg/kg CAE) non-significantly upregulated the
miR-34a expression by (7.02±3.73) and (6.75±1.94) folds compared to METH,
respectively. CAE could be suggested
as a promising natural-derived therapeutic for METH-induced neurotoxicity to
ameliorating motor performance and triggering SOD2 and miR-34a expression.
Keywords: Centella asiatica;
methamphetamine; microRNA-34a; superoxide dismutase II
Abstrak
Keneurotoksikan yang disebabkan oleh dadah psikostimulan, metafetamin (METH) dikaitkan dengan kesan keneurotoksikan yang teruk dan berterusan pada sistem saraf pusat. Centella asiatiaca (CA) terkenal sebagai agen antioksidan dan neurolindung. Walau bagaimanapun, terdapat kajian yang terhad mengenai bahan teraputik semula jadi untuk melemahkan keneurotoksikan yang disebabkan oleh METH. Kami berhasrat mengkaji kesan METH dan ekstrak etanol CA (CAE) pada prestasi motor model haiwan dan ekspresi manganese superoksida dismutase II (SOD2) dan
mikroRNA-34a (miR-34a) pada tisu otak. Tikus Sprague-Dawley jantan diberikan METH (50 mg/kg setiap berat badan) dua kali sehari selama 4 hari, CAE (300 mg/kg dan 500 mg/kg setiap berat badan) selama 21 hari dan gabungan METH dan CAE selama 21 hari. Berat tikus diukur dan prestasi motor dinilai menggunakan ujian kutub menegak dan rasuk sempit. Ekspresi SOD2 dan miR-34a diukur menggunakan Real-time Polymerase Chain Reaction (RT-qPCR). Kumpulan III (300
mg/kg CAE); p<0.001, kumpulan V (METH+300 mg/kg
CAE); p<0.01 dan kumpulan VI (METH+500 mg/kg CAE);
p<0.01, meningkatkan latensi secara signifikan dalam ujian kutub menegak berbanding kumpulan METH. Manakala, kumpulan III (300 mg/kg CAE); p<0.001 menurunkan latensi secara signifikan dalam ujian rasuk sempit berbanding METH. Pasca rawatan CAE pada tikus yang dirawat dengan METH, kumpulan V (METH+300
mg/kg CAE) dan kumpulan IV (METH+500 mg/kg CAE) secara tidak signifikan meningkatkan ekspresi SOD2 berbanding METH iaitu masing-masing pada 3.78±1.03 dan 4.05±0.19 ganda. Pasca rawatan CAE pada tikus yang dirawat
METH, kumpulan V (METH+300 mg/kg CAE) dan kumpulan VI (METH+500 mg/kg CAE)
secara tidak signifikan masing-masing meningkatkan ekspresi miR-34a (7.02±3.73
dan 6.75±1.94 ganda) berbanding METH. CAE boleh dicadangkan sebagai terapeutik
semula jadi yang menjanjikan untuk keneurotoksikan yang
disebabkan oleh METH untuk memperbaiki prestasi motor dan mencetuskan ekspresi
SOD2 dan miR-34a.
Kata kunci: Centella asiatica; metamfetamin;
mikroRNA-34a; superoksida dismutase II
RUJUKAN
Alfarra, H.Y. & Omar, M.O. 2013. Centella asiatica:
From folk remedy to the medicinal biotechnology- a state revision. International Journal of Biosciences 3(6): 49-67.
Alural, B., Genc, S. & Haggarty, S.J.
2016. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric
disorders: Past, present and future. Prog. Neuropsychopharmacol. Biol. Psychiatry 73: 87-103.
Amjad, S. & Umesalma, S. 2015.
Protective effect of Centella asiaticaagainst
aluminium-induced neurotoxicity in cerebral cortex, striatum, hypothalamus and
hippocampus of rat brain-histopathological, and biochemical approach. Molecular Biomarkers & Diagnosis 6(1): 1-7.
Ayaz,
M., Sadiq, A., Junaid, M., Ullah, F., Ovais, M.,
Ullah, I., Ahmed, J. & Shahid, M. 2019. Flavonoids as prospective neuroprotectants and their therapeutic
propensity in aging associated neurological disorders. Frontiers in Aging
Neuroscience 11: 155.
Ba, Q., Cui, C., Wen, L., Feng, S., Zhou, J. & Yang, K. 2015. Schisandrin B shows neuroprotective effect in
6-OHDA-induced Parkinson’s disease via inhibiting the negative modulation of
miR-34a on Nrf2 pathway. Biomedicine & Pharmacotherapy 75: 165-172.
Bae,
D., Kim, Y., Kim, J., Kim, Y., Oh, K., Jun, W. & Kim, S. 2014.
Neuroprotective effects of Eriobotrya japonica and Salvia miltiorrhiza bunge in in vitro and in vivo models. Animal Cells
and Systems 18(2): 119-134.
Bai, X., Ma, Y., Rui, D., Bo, F., Suozhu,
S. & Chen, X. 2011. miR-335 and miR- 34a promote
renal senescence by suppressing mitochondrial antioxidative enzymes. Journal
of the American Society of Nephrology 22(7): 1252-1261.
Balbaa, M., Abdulmalek, S.A. & Khalil, S.
2017. Oxidative stress and expression of insulin signalling proteins in the
brain of diabetic rats: Role of Nigella
sativa oil and antidiabetic drugs. PLoS ONE 12(5): 1-23.
Bhatnagar, M., Goel, I., Roy, T., Shukla, S.D. & Khurana, S.
2017. Complete comparison display (CCD) evaluation of ethanol extracts of Centella asiaticaand Witania somniferashows
that they can non-synergistically ameliorate biochemical and behavioural
damages in MPTP induced Parkinson’s model of mice. PLoS ONE 5(12): 1-19.
Brecht, M.L. & Herbeck, D. 2013.
Methamphetamine use and violent behaviour: Users perception and predictors. J.
Drug Issues 43(4): 468-482.
Chen,
P., Chen, F., Lei, J., Li, Q. & Zhou, B. 2019. Activation of the
miR-34a-mediated SIRT1/mTOR signaling pathway by
urolithin attenuates D-galactose-induced brain aging in mice. Neurotherapeutics 16: 1269-1282.
Chen, T., Su, H., Zhong, N., Tan, H., Li, X., Meng, Y., Duan, C., Zhang, C., Bao, J., Xu, D., Song, W., Zou, J.,
Liu, T., Zhan, Q., Jiang, H. & Zhao, M. 2020. Disrupted brain network
dynamics and cognitive functions in methamphetamine use disorder: Insights from EEG
microstates. BMC Psychiatry 20(334): 1-11.
Flynn, J.M. & Melovn, S. 2013. SOD2
in mitochondrial dysfunction and neurodegeneration. Free Radical Biology and Medicine 62: 4-12.
Gray, N.E., Zweig, J.A., Matthews, D.G., Caruso, M., Quinn, J.F. & Soumyanath, A. 2017. Centella asiaticaattenuates mitochondrial
dysfunction and oxidative stress in Aß-exposed
hippocampal neurons. Oxidative Medicine
and Cellular Longevity 2017: 7023091.
Gray, N.E.,
Harris, C.J., Quinn, J.F. & Soumyanath, A. 2016. Centella asiatica modulates antioxidant and
mitochondrial pathways and improves cognitive function in mice. Journal of Ethnopharmacology 180:
78-86.
Haleagrahara, N. & Ponnusamy, K. 2010.
Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced
parkinsonism in aged Sprague-Dawley rats. The
Journal of Toxicological Sciences 35(1): 41-47.
Hirata, H., Ladenheim,
B., Rethman, R.B., Epstein, C. & Cadet, J.L.
1995. Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide
radical radicals. Brain Research 677(2): 345-347.
Horst, C.H., Titze-De-Almeida, R. &Titze-De-Almeida, S.S. 2017. The involvement of Eag1
potassium channels and miR034a in rotenone-induced death of dopaminergic SH-SY5Y
cells. Molecular Medicine Reports 15: 1479-1488.
Huang, X., Chen, Y.Y., Shen, Y., Cao, X., Li, A., Liu, Q. &
Yuan, T.F. 2107. Methamphetamine abuse impairs motor cortical plasticity and
function. Molecular Psychiatry 22(9): 1274-1281.
Jahan, R., Hossain, S., Seraj, S.,
Nasrin, D., Khatun, Z., Das, P.R. & Rahmatullah,
M. 2012. Centella asiatica(L.) Urb. ethnomedicinal uses and their scientific
validations. American-Eurasian Journal of
Sustainable Agriculture 6(4):
261-270.
Jia, J., Zhang, L., Shi, X., Wu, M.,
Zhou, X., Liu, X. & Huo, T. 2011. SOD2 mediates amifostine-induced protection against glutamate in PC12
cells. Oxid. Med. Cell. Longev. 2016: 4202437.
Krasnova, I.N., Ladenheim, B., Hodges, A.B.,
Volkow, N.D. & Cadet, J.L. 2011. Chronic methamphetamine administration
causes differential regulation of transcription factors in the rat midbrain. PLoS ONE 6(4): 1-10.
Krishna, G., Chatterjee, S., Krishna, P.A. & Seth, R.K. 2019.
Chapter 59 - MicroRNA expression as an
indicator of tissue toxicity and a biomarker in disease and drug-induced
toxicological evaluation. In Biomarkers in Toxicology, 2nd ed. edited by
Gupta, R.C. Massachusetts: Academic Press. pp. 1047-1072.
Li, N., Bates, D.J., An, J., Terry, D.A. & Wang, E. 2011.
Up-regulation of key microRNAs and inverse down-regulation of their predictive
oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging 53: 944-955.
Ling, A.P.K., Chan, H.H., Koh, R.Y.
& Wong, Y.P. 2017. Neuroprotective roles of asiaticoside on hydrogen peroxide-induced toxicity in SH-SY5Y cells. J. Fundam. Appl. Sci. 9(7S):
636-649.
Liu, X.H., Kato, H., Nakata, N., Kogure,
K. & Kato, K. 1993. An immunohistochemical study of copper/zinc superoxide
dismutase and manganese superoxide dismutase in rat hippocampus after transient
cerebral ischemia. Brain Res. 625: 29-37.
Livak, K.J.
& Schmittgen, T.D. 2001. Analysis of relative
gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25(4):
402-408.
Luong, T.N., Carlisle, H.J., Southwell, A. & Patterson, P.H.
2011. Assessment of motor balance and coordination in mice using the balance
beam. Journal of Visualized Experiments 49: 1-3.
Mao,
S., Sun, Q., Xiao, H., Zhang, C. & Li, L. 2015. Secreted miR-34a in
astrocytic shedding vesicles enhanced the vulnerability of dopaminergic neurons
to neurotoxins by targeting Bcl-2. Protein Cell 6(7): 529-540.
Massad, C.A., Washington, T.M., Pautler, R.G.
& Klann, E. 2009. Overexpression of SOD-2 reduces
hippocampal superoxide and prevents memory deficits in a mouse model of
Alzheimer’s disease. Proceedings of the National Academy of Sciences of the
United States of America 106(32): 1376-1381.
Miao, L. & St. Clair, D.K. 2009. Regulation of superoxide
dismutase genes: Implications in disease. Free Radic.
Biol. Med. 47(4): 344-356.
Moshiri, M., Roohbakhsh, A., Talebi, M., Iranshahy, M. & Etemad, L. 2020. Role of natural products in mitigation of
toxic effects of methamphetamine: A review of in vitro and in vivo studies. Avicenna Journal of Phytomedicine 10(4): 334-351.
Moszczynska, A. & Callan, S.P. 2017. Molecular, behavioural and
physiological consequences of methamphetamine neurotoxicity: Implications for
treatment. Journal of Pharmacology and
Experimental Therapeutics 19:
1-77.
National Anti-Drug Agency. 2018. https://www.adk.gov.my/en/public/drugs-statistics/
Orhan, I.E. 2012. Centella asiatica(L.) Urban: From traditional medicine to
modern medicine with neuroprotective potential. Evid. Based Complement Alternat. Med. 2012: 946259.
Parabucki, A.B., Bozic, I.D., Bjelobaba, I.M., Lavrnja, I.C., Brkic, P.D., Jovanovic, T.S., Stojiljkovic,
M.B. & Pekovic, S.M. 2012. Hyperbaric oxygenation
alters temporal expression pattern of superoxide dismutase 2 after corticol stab injury in rats. Croat. Med. J. 53:
586-597.
Phuah,
N.H. & Nagoor, N.H. 2014. Regulation of microRNAs
by natural agents: New strategies in cancer therapies. Biomed. Research
International 2014: 804510.
Raver-Shapira, N., Marciano, E., Meiri,
E., Spector, Y., Rosenfeld, N., Moskovits, N., Bentwich, Z. & Oren, M. 2007. Transcriptional
activation of miR-34a contributes to p53-mediated apoptosis. Molecular Cell 26:
731-743.
Ramkissoon, A. & Wells, P.G. 2015. Methamphetamine oxidative
stress, neurotoxicity and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radic.
Biol. Med. 89: 358-368.
Ricaurte, G.A., Schuster, C.R. & Seiden,
L.S. 1980. Long-term effects of repeated methylamphetamine administration on dopamine and serotonin
neurons in the rat brain: A regional study. Brain
Research 193: 153-163.
Sampath, U. & Janardhanam, V.A.
2013. Asiaticoside, a trisaccharide triterpene induced biochemical and molecular variations in brain of mice with
parkinsonism. Translational
Neurodegeneration 2: 23.
Shaerzadeh, F., Streit, W.J., Heysieattalab, S. & Khoshbouei,
H. 2018. Methamphetamine neurotoxicity, microglia and neuroinflammation. Journal of Neuroinflammation 15(1): 341.
Smith,
P.Y., Hernandez-Rapp, J., Jolivette, F., Lecours, C., Bisht, K., Goupil,
C., Dorval, V., Parsi, S. & Morin, F. 2014. miR-132/122 deficiency impairs
tau metabolism and promotes pathological aggregation in vivo. Hum. Mo. Gen. 24: 6721-6735.
Spencer,
J.P.E. 2007. The interactions of flavonoids within neuronal signalling
pathways. Genes & Nutrition 2(3): 257-273.
Tal, T.L. & Tanguay, R.L. 2012.
Non-coding RNAs- novel targets in neurotoxicity. Neurotoxicology 33(3):
530-544.
Thanh, H.N., Minh, H.P.T., Duc, L.V. &Thanh, T.B. 2016.
Protective effect of Coenzyme Q10 on methamphetamine-induced neurotoxicity in
the mouse brain. Trend in Medical Research 11(1): 1-10.
Thounaojam, M.C., Jadeja, R.N., Warren, M., Powell, F.L., Raju, R., Gutsaeva, D., Khurana, S., Martin, P.M. & Bartoli, M.
2019. MicroRNA-34a (miR-34a) mediates retinal endothelial cell premature
senescence through mitochondrial dysfunction and loss of antioxidant
activities. Antioxidants 8(9): 328.
Thrash, B., Thiruchelvan, K., Ahuja, M., Suppiramaniam, V. & Dhanasekaran,
M. 2009. Methamphetamine-induced neurotoxicity: The road to Parkinson’s
disease. Pharmacological Reports 61: 966-977.
Volkow, N.D. 2013. Research Report Series: Methamphetamine. National Institute on Drug Abuse. pp.
1-10.
Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Leonida-Yee,
M., Franceshi, D., Sedler,
M.J., Gatley, S.J. & Hitzeman,
R. 2001. Association of dopamine transporter reduction with psychomotor
impairment in methamphetamine abuser. Am.
J. Psychiatry 158: 377-382.
Wan, Y., Cui, R., Gu, J., Zhang, X., Xiang, X., Liu, C., Qu, K.
& Lin, T. 2017. Identification of four oxidative stress-responsive
microRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p in hepatocellular
carcinoma. Oxidative Medicine and Cellular Longevity 2017: 5189138.
Wang, C., Ji, B., Cheng, B., Chen, J. & Bai, B. 2014.
Neuroprotection of microRNA in neurological disorders (Review). Biomedical
Reports 2: 611-619.
Xu, S., Tu, S., Gao, J., Liu, J., Guo, Z., Zhang, J., Liu, X.,
Liang, J. & Huang, Y. 2018. Protective and restorative effects of the
traditional Chinese medicine Jitai tablet against
methamphetamine-induced dopaminergic neurotoxicity. BMC Complementary and
Alternative Medicine 18(1): 76.
Xu, C.L., Wang, Q.Z., Sun, L.M., Li, X.M., Li, L.F., Zhang, J.,
Xu, R. & Ma, S.P. 2012. Asiaticoside: Attenuation of neurotoxicity induced by MPTP
in rat model of Parkinsonism via maintaining redox balance and up-regulating
the ratio of Bcl-2/Bax. Pharmacology, Biochemistry
and Behavior 100: 413-418.
Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J.,
Liao, L. & Xiong, K. 2018. The main molecular
mechanisms underlying methamphetamine-induced neurotoxicity and implications
for pharmacological treatment. Front. Mol. Neurosci. 11(186): 1-18.
Zainol, M.K., Abd-Hamid, A., Yusof, S. & Muse, R. 2003.
Antioxidative activity and total phenolic compound of leaf, root and petiole of
four accessions of Centella asiatica(L.)
Urban. Food Chemistry 2: 575-581.
Zarruk, J.G., Garcia-Yebenes, I., Romera, V.G., Ballesteros, I., Moraga, A., Cuartero, M.I., Huratado, O., Sobrado, M. & Pradillo, J.M.
2011. Neurological tests for functional outcome assessment in rodent models of
ischemic stroke. Rev. Neurol. 53(10): 607-618.
*Pengarang untuk surat-menyurat; email: shiha@uitm.edu.my
|