Sains Malaysiana 52(1)(2023): 245-260

http://doi.org/10.17576/jsm-2023-5201-20

 

Penaksiran Risiko Sel Bahan Api Oksida Pepejal (SOFC)-Menggunakan Rangkaian Bayesan

(Risk Assessment of Solid Oxide Fuel Cells (SOFCs)-Using Bayesian Networks)

 

MUTHIEAH MULLIYATDI1, DARMAN NORDIN2,*, NURZAILYN SHAMSUDDIN2, MASLI IRWAN ROSLI2, ZAMIRA HASANAH ZAMZURI3

 

1Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43000 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43000 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Fakulti Sains Matematik, Universiti Kebangsaan Malaysia, 43000 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Recieved: 10 June 2022/Accepted: 26 September 2022

 

Abstrak

Tenaga boleh baharu menjadi tumpuan dunia sebagai sumber tenaga alternatif bagi penggantian penggunaan tenaga petroleum. Tenaga boleh baharu yang mendapat perhatian adalah penggunaan sel bahan api oksida pepejal (SOFC) kerana tenaga ini mempunyai pelepasan karbon yang minimum di samping kelestarian tenaga yang bersih. Walau bagaimanapun, penggunaan SOFC dalam penjanaan tenaga elektrik adalah terhad kerana terdapat risiko dari segi suhu, pelepasan bahan kimia, serta kaedah penyimpanan tenaga penjanaan yang mampu memberi kesan kemusnahan serta kemalangan yang membawa kepada  gangguan terhadap pengendalian operasi dan keadaan sekeliling. Oleh itu, penaksiran risiko memainkan peranan penting dalam memastikan pengoperasian keseluruhan sistem berada dalam keadaan selamat melalui pendekatan keselamatan berdasarkan kepada data yang didapati secara langsung atau data kemalangan terdahulu. Penyelidikan ini mengkaji senario yang membawa kepada kemusnahan melalui kaedah pemetaan Bayesan menggunakan program perisian sumber terbuka, GeNie dalam mengenal pasti risiko terhadap operasi. Keadaan operasi pada suhu tinggi dikenal pasti sebagai punca utama yang menyumbang kepada risiko. Kemerosotan sebanyak 76% sehingga 90% boleh berlaku sekiranya suhu operasi melebihi suhu optimum bersama kemerosotan parameter utama operasi.

 

Kata kunci: Degradasi; kerosakan; penaksiran risiko; sel bahan api oksida pepejal

 

Abstract

Renewable energy becomes the world’s attention as an alternative energy resource to replace petroleum energy usage. Renewable energy that is getting attention is solid oxide fuels cell (SOFCs) because they produce minimum carbon emission with clean sustainable energy. However, SOFCs usage in electricity generation is limited due to the risks of temperature, chemical substance emission, and generation power storage method that is able to cause destruction and accidents that will bring disruption to the handling operation and the surrounding. Therefore, risk assessment plays an important role to ensure the overall operation system in safe condition through safety approach based on the direct data or previous accidents data. This study investigates the consequences scenario due to high operating temperature through Bayesian mapping method using open resource software programme, GeNie in identifying risks towards operation. The operation condition in high temperature is identified as the main cause that contributes to the risk. The degeneration of 76% to 90% can happen if the operation temperature exceeds the optimum temperature with the degradation of the main operation parameter.

 

Keywords: Degradation; fault; risk assessment; solid oxide fuel cells

REFERENCES

Abdul Hamid, H.H., Zakaria, I. & Othman, M.S. 2019. Tenaga boleh diperbaharui bagi penjanaan tenaga elektrik di Malaysia: Satu kajian literatur. Journal on Technical and Vocational Education (JTVE) 4(3) Special Edition NASCO: 129-140.

Abdul Rosyid, O. & Oktaufik, M.A.M. (2009). Infrastruktur hidrogen untuk aplikasi fuel cell dalam era ekonomi hidrogen. J. Ilm. Tek. Energi 1(9): 1-14.

Akbarizan, Kurniawan, R., Nazri, M.Z.A., Abdullah, S.N.H.S., Murhayati, S. & Nurcahaya. 2018. Using Bayesian Network for determining the recipient of Zakat in BAZNAS Pekanbaru. 2nd International Conference on Electrical Engineering and Informatics (ICon EEI). https://doi.org/10.1109/ICon-EEI.2018.8784142

Aman, N.A.M.N., Muchtar, A., Rosli, M.I., Baharuddin, N.A., Somalu, M.R. & Kalib, N.S. 2020. Influence of thermal conductivity on the thermal behavior of intermediate-Temperature solid oxide fuel cells. Journal of Electrochemical Science and Technology 11(2): 132-139. https://doi.org/10.33961/jecst.2019.00276

Amin, M.T., Khan, F. & Imtiaz, S. 2019. Fault detection and pathway analysis using a dynamic Bayesian network. Chemical Engineering Science 195: 777-790. https://doi.org/10.1016/j.ces.2018.10.024

Arsie, I., Filippi, A. di Marra, D., Pianese, C. & Sorrentino, M. 2010. Fault tree analysis aimed to design and implement on-field fault detection and isolation schemes for SOFC systems. ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology Conference.http://dx.doi.org/10.1115/FuelCell2010-33344

Bahoo Toroody, A., de Carlo, F., Paltrinieri, N., Tucci, M. & van Gelder, P.H.A.J.M. 2020. Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation. Reliability Engineering & System Safety 201: 106966. https://doi.org/10.1016/j.ress.2020.106966

Behravan, A., Kiamanesh, B. & Obermaisser, R. 2021. Fault diagnosis of DCV and heating systems based on causal relation in fuzzy Bayesian belief networks using relation direction probabilities. Energies 14(20): 6607. https://doi.org/10.3390/en14206607

Castillo, E., Gutierrez, J.M. & Hadi, A.S. 1997. Sensitivity analysis in discrete Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 27(4): 412-423. https://doi.org/10.1109/3468.594909

Costamagna, P., de Giorgi, A., Moser, G., Serpico, S.B. & Trucco, A. 2019. Data-driven techniques for fault diagnosis in power generation plants based on solid oxide fuel cells. Energy Conversion and Management 180(1336): 281-291. https://doi.org/10.1016/j.enconman.2018.10.107

Deshpande, G., Shrikhande, S., Sawarkar, A.N. & Patle, D.S. 2022. Multiobjective optimization of ultrasound intensified and ionic liquid catalyzed in situ algal biodiesel production considering economic, environmental and safety indicators. Chemical Engineering Research and Design 180: 134-152. https://doi.org/10.1016/j.cherd.2022.02.011

Ericson, C.A. 2005. Hazard Analysis Techniques for System Safety. New York: John Wiley & Sons.

Feng, X., Jiang, J. & Wang, W. 2020. Gas pipeline failure evaluation method based on a Noisy-OR gate bayesian network. Journal of Loss Prevention in the Process Industries 66: 104175. https://doi.org/10.1016/j.jlp.2020.104175

Fenton, N., Lagnado, D., Dahlman, C. & Neil, M. 2019. The opportunity prior: A proof-based prior for criminal cases. Law, Probability and Risk 18(4): 237-253. https://doi.org/10.1093/lpr/mgz007

Ferreira, O., Viavattene, C., Jiménez, J.A., Bolle, A., das Neves, L., Plomaritis, T.A., McCall, R. & van Dongeren, A.R. 2018. Storm-induced risk assessment: Evaluation of two tools at the regional and hotspot scale. Coastal Engineering 134: 241-253. https://doi.org/10.1016/j.coastaleng.2017.10.005

Finkenrath, M., Lokurlu, A., Blum, L. & Stolten, D. 2004. Dynamic Simulation Model of a High Temperature Fuel Cell System. 5th European Congress on Modelling and Simulation Conference.

Forrai, A., Funato, H., Yanagita, Y. & Kato, Y. 2005. Fuel-cell parameter estimation and diagnostics. IEEE Transactions on Energy Conversion 20(3): 668-675. https://doi.org/10.1109/TEC.2005.845516

Garner, S. & Ibrahim, Z. 2016. Gas turbine common issues, failure investigations, root cause analyses, and preventative actions. ASME 2016 Power Conference. https://doi.org/10.1115/power2016-59352

Gazzarri, J.I. & Kesler, O. 2007. Non-destructive delamination detection in solid oxide fuel cells. Journal of Power Sources 167(2): 430-441.

Irshad, M., Siraj, K., Raza, R., Ali, A., Tiwari, P., Zhu, B., Rafique, A., Ali, A., Kaleem Ullah, M., & Usman, A. 2016. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences 6(3): 75. https://doi.org/10.3390/app6030075

Jia, C., Han, M. & Chen, M. 2017. Analysis of gas leakage and current loss of solid oxide fuel cells by screen printing. ECS Transactions 78(1): 1533-1540. https://doi.org/10.1149/07801.1533ecst

Johnston, B., Mayo, M.C. & Khare, A. 2005. Hydrogen: the energy source for the 21st century. Technovation 25(6): 569-585. https://doi.org/10.1016/j.technovation.2003.11.005

Kabir, S. & Papadopoulos, Y. 201). Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review. Safety Science 115: 154-175. https://doi.org/10.1016/j.ssci.2019.02.009

Kalib, N.S., Muchtar, A., Rao Somalu, M., Kamal, A., Mohd Ihsan, A., Ashikin, N., Aman, M.N. & Akidah Baharuddin, N. 2018. Factors Influencing thermal stress development in solid oxide fuel cells. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Journal Homepage 50: 146-152. www.akademiabaru.com/arfmts.html

Lackner, M.A., Rogers, A.L. & Manwell, J.F. 2008. Uncertainty analysis in MCP-based wind resource assessment and energy production estimation. Journal of Solar Energy Engineering 130(3): 031006. https://doi.org/10.1115/1.2931499

Lee, Y.K., Mavris, D.N., Volovoi, V.V., Yuan, M. & Fisher, T. 2010. A fault diagnosis method for industrial gas turbines using Bayesian data analysis. Journal of Engineering for Gas Turbines and Power 132(4): 041602. https://doi.org/10.1115/1.3204508

Leimeister, M. & Kolios, A. 2018. A review of reliability-based methods for risk analysis and their application in the offshore wind industry. Renewable and Sustainable Energy Reviews 91: 1065-1076. https://doi.org/10.1016/j.rser.2018.04.004

Li, S., Cao, H. & Yang, Y. 2018. Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification. Journal of Power Sources 378: 646-659. https://doi.org/10.1016/j.jpowsour.2018.01.015

Mahato, N., Banerjee, A., Gupta, A., Omar, S. & Balani, K. 2015. Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science 72: 141-337. https://doi.org/10.1016/j.pmatsci.2015.01.00

Monica, I., Larisa, I., Serban, M. & Alina, R. 2012. Hazard Identification and Risk Assessment in Sustainable Enterprise. 52(12): 58-61. http://www.ipedr.com/vol52/012-ICEME2012-C00027.pdf

Nanik Indayaningsih, Muljadi & Erfin Yundra Febrianto. 2008. Studi awal penggabungan antar komponen sel bahan bakar berbasis keramik. Jurnal Fisika Himpunan Fisika Indonesia 8(1): 12-23.

Nikolić, B. & Ružić-Dimitrijević, L. 2009. Risk assessment of information technology systems. Issues in Informing Science and Information Technology (IISIT) 6: 595-615.

Peng, J., Huang, J., Wu, X., Xu, Y., Chen, H. & Li, X. 2021. Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review. Journal of Power Sources 505: 230058. https://doi.org/10.1016/j.jpowsour.2021.230058

Pijolat, C. 2012. Screen-printing for the fabrication of solid oxide fuel cells (SOFC). In Printed Films: Materials Science and Applications in Sensors, Electronics and Photonics, edited by Prudenziati, M. & Hormadaly, J. Wood Publishing: Elsevier. hlm. 469-495. https://doi.org/10.1533/9780857096210.2.469

Plomaritis, T.A., Costas, S. & Ferreira, Ó. 2018. Use of a Bayesian Network for coastal hazards, impact and disaster risk reduction assessment at a coastal barrier (Ria Formosa, Portugal). Coastal Engineering 134: 134-147. https://doi.org/10.1016/j.coastaleng.2017.07.003

Ploner, A., Hagen, A. & Hauch, A. 2018. Carbon deposition diagnostics for reliability and state-of-health assessment of SOFC. ECS Transactions 85(4): 25-32. https://doi.org/10.1149/08504.0025ecst

Riascos, L.A.M., Simoes, M.G. & Miyagi, P.E. 2007. A Bayesian network fault diagnostic system for proton exchange membrane fuel cells. Journal of Power Sources 165(1): 267-278. https://doi.org/10.1016/j.jpowsour.2006.12.003

Romessis, C. & Mathioudakis, K. 2006. Bayesian network approach for gas path fault diagnosis. Journal of Engineering for Gas Turbines and Power 128(1): 64-72. https://doi.org/10.1115/1.1924536

Sanuy, M., Jiménez, J.A. & Plant, N. 2020. A Bayesian network methodology for coastal hazard assessments on a regional scale: The BN-craf. Coastal Engineering 157: 103627. https://doi.org/10.1016/j.coastaleng.2019.103627

Sayed Ali, S. 2018. Testing and evaluation the new safety job analysis guideline. Master’s Thesis in Risk Management, University of Stavanger, Norway (Tidak diterbitkan).

Sharif, A.M., Basri, S. & Ali, H. 2014. Strength and weakness of software risk assessment tools. International Journal of Software Engineering & Its Applications 8(3): 389-398.

Sharifzadeh, M. & Rashtchian, D. 2020. Fault detection, loss prevention, hazard mitigation, and safe operation of solid oxide fuel cell systems. In Design and Operation of Solid Oxide Fuel Cells: The Systems Engineering Vision for Industrial Application, edited by Sharifzadeh, M. hlm. 255-274. Elsevier. https://doi.org/10.1016/B978-0-12-815253-9.00008-2

Sreedhar, I., Agarwal, B., Goyal, P. & Agarwal, A. 2020. An overview of degradation in solid oxide fuel cells-potential clean power sources. Journal of Solid State Electrochemistry 24(6): 1239-1270. https://doi.org/10.1007/s10008-020-04584-4

Uusitalo, L. 2007. Advantages and challenges of Bayesian networks in environmental modelling. Ecological Modelling 203(3-4): 312-318. https://doi.org/10.1016/j.ecolmodel.2006.11.033

Vijay, P., Tadé, M.O. & Shao, Z. 2019. Adaptive observer based approach for the fault diagnosis in solid oxide fuel cells. Journal of Process Control 84: 101-114. https://doi. org/10.1016/j.jprocont.2019.09.010

Vilela, J., Castro, J., Martins, L.E.G. & Gorschek, T. 2017. Integration between requirements engineering and safety analysis: A systematic literature review. Journal of Systems and Software 125: 68-92. https://doi.org/10.1016/j.jss.2016.11.031

Wang, B., Albarracín-Suazo, S., Pagán-Torres, Y. & Nikolla, E. 2017. Advances in methane conversion processes. Catalysis Today 285: 147-158. https://doi.org/10.1016/j.cattod.2017.01.023

Wang, K., Marion-Péra, M-C., Hissel, D., Yousfi-Steiner, N., Pohjoranta, A. & Pofahl, S. 2012. SOFC modelling based on discrete Bayesian network for system diagnosis use. IFAC Proceedings Volumes (IFAC-PapersOnline) 8: 675-680.

William, B. 2008. Selection of Hazard Evaluation Techniques. https://process-improvement-institute.com/_downloads/Selection_of_Hazard_Evaluation_Techniques.pdf

Wu, X., Xu, Y-W., Zhao, D., Li, Z., Zhong, X., Chen, M., Jiang, J., Deng, Z., Fu, X. & Li, X. 2019. Fault detection and assessment for solid oxide fuel cell system gas supply unit based on novel principal component analysis. Journal of Power Sources 436: 226864. https://doi.org/10.1016/j.jpowsour.2019.226864

Wu, X.J. & Ye, Q. 2016. Fault diagnosis and prognostic of solid oxide fuel cells. Journal of Power Sources 321: 47-56. https://doi.org/10.1016/j.jpowsour.2016.04.080

Wu, X. & Gao, D. 2017. Fault tolerance control of SOFC systems based on nonlinear model predictive control. International Journal of Hydrogen Energy 42(4): 2288-2308. https://doi.org/10.1016/j.ijhydene.2016.09.203

Wu, X-L., Xu, Y-W., Xue, T. & Li, X. 2017. Fault modeling and simulation of pure hydrogen solid oxide fuel cell system. 2017 Chinese Automation Congress (CAC). https://doi.org/10.1109/CAC.2017.8243231

Wu, Z., Shen, Y., Wang, H. & Wu, M. 2020. Urban flood disaster risk evaluation based on ontology and Bayesian Network. Journal of Hydrology 583: 124596. https://doi.org/10.1016/j.jhydrol.2020.124596

Xin, P-W. 2017. Risk-based design tools for process facilities. Master’s Thesis. Memorial University of Newfoundland (Tidak diterbitkan).

Xin, P., Khan, F. & Ahmed, S. 2017. Dynamic hazard identification and scenario mapping using Bayesian network. Process Safety and Environmental Protection 105: 143-155. https://doi.org/10.1016/j.psep.2016.11.003

Yang, B., Guo, Z., Wang, J., Wang, J., Zhu, T., Shu, H., Qiu, G., Chen, J. & Zhang, J. 2021. Solid oxide fuel cell systems fault diagnosis: Critical summarization, classification, and perspectives. Journal of Energy Storage 34: 102153. https://doi.org/10.1016/j.est.2020.102153

Yazdi, M. & Kabir, S. 2017. A fuzzy Bayesian network approach for risk analysis in process industries. Process Safety and Environmental Protection 111: 507-519. https://doi.org/10.1016/j.psep.2017.08.015

Zaccaria, V., Tucker, D. & Traverso, A. 2016. A distributed realtime model of degradation in a solid oxide fuel cell, part I: Model characterization. Journal of Power Sources 311: 175-181. https://doi.org/10.1016/j.jpowsour.2016.02.040

Zaccaria, V., Tucker, D. & Traverso, A. 2016. A distributed real-time model of degradation in a solid oxide fuel cell, part II: Analysis of fuel cell performance and potential failures. Journal of Power Sources 327: 736-742. https://doi.org/10.1016/j.jpowsour.2016.01.027

Zarei, E., Azadeh, A., Aliabadi, M.M. & Mohammadfam, I. 2017. Dynamic safety risk modeling of process systems using Bayesian network. Process Safety Progress 36(4): 399-407. https://doi.org/10.1002/prs.11889

Zhang, Z., Li, S., Xiao, Y. & Yang, Y. 2019. Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning. Applied Energy 233-234: 930-942. https://doi.org/10.1016/j.apenergy.2018.10.113

 

*Corresponding author; email: darman@ukm.edu.my

 

 

   

sebelumnya