Sains Malaysiana 52(1)(2023): 35-46
http://doi.org/10.17576/jsm-2023-5201-03
Cytoskeletal Morphological Changes of Mesenchymal
Stem Cells after Oxidant Damage and its Prevention by Thymoquinone
(Perubahan Morfologi Sitokerangka Sel Stem Mesenkima selepas Kerosakan Oksidan dan Pencegahannya oleh Timoquinon)
SUHAIMI
DRAMAN1, NURUL KABIR1,* &
DURRIYYAH SHARIFAH HASAN ADLI2
1Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
2Centre for Civilisational Dialogue, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory,
Malaysia
Diserahkan: 29 September 2021/Diterima:
3 November 2022
Abstract
The functional
integrity of the cytoskeleton of mesenchymal stem cells (MSCs) is essential for
its differentiation into multiple cell lineages including adipocytes,
chondrocytes, and osteoblasts. Abnormalities in the cytoskeletal proteins such
as actin and microtubule can cause disrupted cell signalling and irregular
movements of organelles leading to cell death. This study investigated
cytoskeletal and nuclear morphological changes of the MSC due to oxidative
damage by hydrogen peroxide (H2O2) and the possible
prevention of these changes by the antioxidant thymoquinone (TQ). Bone
marrow MSCs from Sprague Dawley rats were cultured and treated with different
concentrations of H2O2 with or without TQ to observe the
potential protective activity. Triple-label fluorescence immunocytochemistry
was performed post-treatment to observe the nucleus, actin and microtubules
using 4’,6-diamidino-2-phenylindole (DAPI), Alexa Fluor 488-labelled phalloidin
and Cy3-labelled anti-tubulin antibody, respectively. The normal stem cell
cytoskeleton demonstrated intact actin and microtubule structures along with
normal appearance of the nucleus. However, oxidative damage by H2O2 caused a severe disruption of the cytoskeletal morphology of the actin and
microtubule along with apoptosis and necrosis of the nucleus. Interestingly,
both immunocytochemical and Fluorescence-Activated Cell Sorting (FACS) results
showed that these morphological changes were prevented by TQ at low
concentrations while higher concentrations of TQ were harmful. This study
suggested that TQ could save MSCs from oxidative-induced cell death.
Keywords:
Cytoskeleton; oxidative damage; stem cell; thymoquinone
Abstrak
Keutuhan fungsi sitokerangka sel induk mesenkima (MSCs) adalah penting untuk pembezaannya kepada pelbagai keturunan sel termasuk adiposit, kondrosit dan osteoblas. Keabnormalan dalam protein sitokerangka seperti aktin dan mikrotubul boleh mengakibatkan isyarat sel terganggu dan pergerakan organel tidak teratur yang membawa kepada kematian sel. Penyelidikan ini mengkaji perubahan morfologisitokerangka dan nukleus MSC akibat kerosakan oksidatif oleh hidrogen peroksida (H2O2)
dan kemungkinan pencegahan perubahan ini oleh antioksidan, timoquinon (TQ). MSC sumsum tulang daripada tikus Sprague Dawley telah dikulturkan dan dirawat dengan kepekatan H2O2 yang berbeza dengan atau tanpa TQ untuk mencerap potensi aktiviti perlindungan. Imunositokimia triple-label fluorescence telah dilakukan selepas rawatan untuk mencerap nukleus, aktin dan mikrotubul sel menggunakan masing-masing 4’,6-diamidino-2-fenilindol (DAPI), faloidin terlabel Alexa Fluor 488 dan antibodi anti-tubulin terlabel Cy3. Sitokerangka sel induk normal menunjukkan struktur aktin dan mikrotubul yang utuh berserta dengan penampilan normal nukleus. Walau bagaimanapun, kerosakan oksidatif oleh H2O2 mengakibatkan gangguan teruk ke atas morfologi sitokerangka aktin dan mikrotubul berserta dengan apoptosis dan nekrosis nukleus. Menariknya, kedua-dua hasil imunositokimia dan Fluorescence-activated
Cell Sorting (FACS) menunjukkan bahawa perubahan morfologi ini dihalang oleh TQ pada kepekatan rendah manakala kepekatan TQ yang lebih tinggi adalah berbahaya. Kajian ini menyarankan bahawa TQ boleh menyelamatkan MSC daripada kematian sel yang disebabkan oleh oksidan.
Kata kunci: Kerosakan oksidatif; sel induk; sitokerangka; timoquinon
RUJUKAN
Abd-Elkareem, M., Abd-El-Rahman, M.,
Khalil, N. & Amer, A. 2021. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of
monosodium glutamate challenged rats. Scientific Reports 11(1): 13519.
Acharya, B., Chatterjee, A., Ganguli, A., Bhattacharya, S. &
Chakrabarti, G. 2014. Thymoquinone inhibits microtubule polymerization by
tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie 97: 78-91.
Ahlatci, A., Kuzhan, A., Taysi, S., Demirtas, O., Alkis, H., Tarakcioglu, M., Demirci, A., Caglayan, D., Saricicek, E. & Cinar, K. 2014. Radiation-modifying abilities of Nigella sativa and Thymoquinone on
radiation-induced nitrosative stress in the brain
tissue. Phytomedicine 21(5): 740-744.
Ardiana, M., Pikir, B., Santoso, A., Hermawan, H. & Al-Farabi, M.
2020. Effect of Nigella sativa supplementation on oxidative stress and antioxidant parameters: A meta-analysis
of randomized controlled trials. The Scientific World Journal 2020:
2390706.
Ates, M.B.
& Ortatatli, M. 2021. The effects of Nigella sativa seeds and Thymoquinone on
aflatoxin phase-2 detoxification through glutathione and
glutathione-s-transferase alpha-3, and the relationship between aflatoxin
B1-DNA. Toxicon 193: 86-92.
Ayuob, N., Balgoon, M., El-Mansy, A.,
Mubarak, W. & Firgany, A. 2020. Thymoquinone
upregulates catalase gene expression and preserves the structure of the renal
cortex of propylthiouracil-induced hypothyroid rats. Oxidative Medicine and Cellular
Longevity 2020: 3295831.
Badary, O.,
Taha, R., Gamal El-Din, A. & Abdel-Wahab, M. 2003. Thymoquinone is a potent
superoxide anion scavenger. Drug and Chemical Toxicology 26(2): 87-98.
Badr, G., Mohany, M. & Abu-Tarboush, F.
2011. Thymoquinone decreases F-actin polymerization and the proliferation of
human multiple myeloma cells by suppressing STAT3 phosphorylation and Bcl2/Bcl-XL expression. Lipids in Health and Disease 10(1): 236.
Bellion, P., Olk, M., Will, F.,
Dietrich, H., Baum, M., Eisenbrand, G. & Janzowski, C. 2009. Formation of hydrogen peroxide in cell
culture media by apple polyphenols and its effect on antioxidant biomarkers in
the colon cell line HT-29. Molecular Nutrition & Food Research 53(10): 1226-1236.
Ben-Shmuel, A., Batel, S., Guy, B. &
Mira, B. 2021. The role of the cytoskeleton in regulating the natural killer
cell immune response in health and disease: From signaling dynamics to function. Frontiers in Cell and Developmental Biology 9:
609532.
Bestetti, S.,
Mauro, G., Ilaria, S., Paolo, P., Alessandro, R., Roberto, S. & Iria, M.F. 2020. Human aquaporin-11 guarantees efficient
transport of H2O2 across the endoplasmic reticulum
membrane. Redox Biology 28: 101326.
Boveris, A.
& Cadenas, E. 2001. Mitochondrial production of
hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone. International Union of Biochemistry and
Molecular Biology Life 50(4): 245-250.
Cheeseman, K. & Slater, T. 1993. An introduction to free
radical biochemistry. British Medical Bulletin 49(3): 481-493.
Chen, H., Ousheng, L., Sijia, C. & Yueying, Z. 2021.
Aging and mesenchymal stem cells: Therapeutic opportunities and challenges in
the older group. Gerontology 68(3): 339-352.
Ciftci, E., Turkoglu, V. & Bas, Z. 2021. Inhibition effect of
thymoquinone and lycopene compounds on glutathione reductase enzyme activity
purified from human erythrocytes. Journal of Biomolecular Structure and
Dynamics 40(20): 10086-10093.
Demain, A.
& Vaishnav, P. 2010. Natural products for cancer chemotherapy. Microbial
Biotechnology 4(6): 687-699.
Dupré, L., Boztug, K. & Pfajfer, L.
2021. Actin dynamics at the T cell synapse as revealed by immune-related actinopathies. Frontiers in Cell and Developmental
Biology 9: 665519.
El-Mahdy, M., Zhu, Q., Wang, Q., Wani, G. & Wani, A. 2005.
Thymoquinone induces apoptosis through activation of caspase-8 and
mitochondrial events in p53-null myeloblastic leukemia HL-60 cells. International Journal of Cancer 117(3): 409-417.
Emerson, P., Tejas, D., Luke, S., Shehane, M., Megan, H., Paula, B., Shyam,
P., Mikhail, A., David, G. & Liza, T. 2022. Left atrial strain in cardiac
surveillance of bone marrow transplant patients with prior anthracycline
exposure. International Journal of Cardiology 354: 68-74.
Eteraf-Oskouei, T.
& Moslem, N. 2013. Traditional and modern uses of natural honey in human
diseases: A review. Iranian Journal of Basic Medical Sciences 16(6):
731-742.
Fanoudi, S., Alavi, M., Hosseini, M. & Sadeghnia,
H. 2019. Nigella sativa and
thymoquinone attenuate oxidative stress and cognitive impairment following
cerebral hypoperfusion in rats. Metabolic Brain Disease 34(4):
1001-1010.
Feeney, C., Frantseva, M., Carlen, P., Pennefather, P., Shulyakova, N., Shniffer, C. & Mills, L. 2008. Vulnerability of glial
cells to hydrogen peroxide in cultured hippocampal slices. Brain Research 1198: 1-15.
Folmer, V.,
Pedroso, N., Matias, A., Lopes, S., Antunes, F., Cyrne,
L. & Marinho, H. 2008. H2O2 induces rapid biophysical and permeability changes in the plasma membrane of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778(4): 1141-1147.
Galluzzi, L.,
Bravo-San Pedro, J., Vitale, I., Aaronson, S., Abrams, J., Adam, D., Alnemri, E., Altucci, L.,
Andrews, D., Annicchiarico-Petruzzelli, M., Baehrecke, E., Bazan, N., Bertrand, M., Bianchi, K., Blagosklonny, M., Blomgren, K., Borner, C., Bredesen, D., Brenner, C., Campanella, M.,
Candi, E., Cecconi, F., Chan, F., Chandel,
N., Cheng, E., Chipuk, J., Cidlowski,
J., Ciechanover, A., Dawson, T., Dawson, V., De Laurenzi, V., De Maria, R., Debatin,
K., Di Daniele, N., Dixit, V., Dynlacht, B., El-Deiry, W., Fimia, G., Flavell,
R., Fulda, S., Garrido, C., Gougeon, M., Green, D., Gronemeyer, H., Hajnoczky, G.,
Hardwick, J., Hengartner, M., Ichijo,
H., Joseph, B., Jost, P., Kaufmann, T., Kepp, O., Klionsky, D., Knight,
R., Kumar, S., Lemasters, J., Levine, B., Linkermann, A., Lipton, S., Lockshin,
R., López-Otín, C., Lugli,
E., Madeo, F., Malorni, W.,
Marine, J., Martin, S., Martinou, J., Medema, J., Meier, P., Melino,
S., Mizushima, N., Moll, U., Muñoz-Pinedo, C., Nuñez, G., Oberst, A., Panaretakis, T., Penninger, J.,
Peter, M., Piacentini, M., Pinton,
P., Prehn, J., Puthalakath,
H., Rabinovich, G., Ravichandran, K., Rizzuto, R.,
Rodrigues, C., Rubinsztein, D., Rudel,
T., Shi, Y., Simon, H., Stockwell, B., Szabadkai, G.,
Tait, S., Tang, H., Tavernarakis, N., Tsujimoto, Y., Vanden Berghe, T., Vandenabeele, P., Villunger,
A., Wagner, E., Walczak, H., White, E., Wood, W., Yuan, J., Zakeri,
Z., Zhivotovsky, B., Melino,
G. & Kroemer, G. 2014. Essential versus accessory aspects of cell death:
Recommendations of the NCCD 2015. Cell Death & Differentiation 22(1): 73.
Ganie, S., Zargar, B., Masood, A. & Zargar,
M. 2012. Effect of long dose exposure of Podophyllum hexandrum methanol extract on antioxidant defense system and body and organ weight changes of albino
rats. Asian Pacific Journal of Tropical Biomedicine 2(3): S1600-S1605.
Gille, J.
& Joenje, H. 1992a. Cell culture models for
oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutation Research/DNAging 275(3-6):
405-414.
Gille, J. & Joenje, H. 1992b. Cell culture models for oxidative
stress: Superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutation Research/DNAging 275(3-6):
405-414.
Grishagin, I.V.
2015. Automatic cell counting with ImageJ. Analytical Biochemistry 473:
63-65.
Gülden, M.,
Jess, A., Kammann, J., Maser, E. & Seibert, H.
2010. Cytotoxic potency of H2O2 in cell cultures: Impact
of cell concentration and exposure time. Free Radical Biology and Medicine 49(8): 1298-1305.
Häcker, G.
2000. The morphology of apoptosis. Cell and Tissue Research 301(1):
5-17.
Haron,
A.S., Sharifah, S.S.A., Latifah, S.Y., Rohaina, A.R.,
Yong, S.O., Fatin, H.Z.A. & Henna, R.A. 2018.
Cytotoxic effect of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC)
on liver cancer cell integrated with hepatitis b genome, Hep3b. Evidence-Based
Complementary and Alternative Medicine 2018: 1549805.
Hu, W. & Lu, Q. 2014. Impact of oxidative stress on the
cytoskeleton of pancreatic epithelial cells. Experimental and Therapeutic
Medicine 8(5): 1438-1442.
Hu, X., Ma, J., Vikash, V., Li, J., Wu, D., Liu, Y., Zhang, J.
& Dong, W. 2017. Thymoquinone augments cisplatin-induced apoptosis on
oesophageal carcinoma through mitigating the activation of JAK2/STAT3 pathway. Digestive
Diseases and Sciences 63(1): 126-134.
Ichwan, S.
2014. Apoptotic activities of thymoquinone, an active ingredient of black seed
(Nigella sativa), in cervical cancer
cell lines. The Chinese Journal of Physiology 57(5): 249-255.
Isaev,
N.K., Chetverikov, N.S., Stelmashook,
E.V., Genrikhs, E.E., Khaspekov,
L.G. & Illarioshkin, S.N. 2020. Thymoquinone as a
potential neuroprotector in acute and chronic forms of cerebral pathology. Biochemistry (Moscow) 85(2):
167-176.
Jehan, S.,
Zhong, C., Li, G., Zulqarnain Bakhtiar,
S., Li, D. & Sui, G. 2020. Thymoquinone selectively induces hepatocellular
carcinoma cell apoptosis in synergism with clinical therapeutics and dependence
of p53 status. Frontiers in Pharmacology 11: 555283.
Kabir, N., Schaefer, A., Nakhost, A., Sossin, W. & Forscher, P.
2001. Protein Kinase C activation promotes microtubule advance in neuronal
growth cones by increasing average microtubule growth lifetimes. Journal of
Cell Biology 152(5): 1033-1044.
Kalamegam, G., Saadiah, M.A., Afnan, O.B., Etimad,
A.A., Mamdouh, A.G., Mohammed, M.A., Farid, A., Muhammed, A.E. & Peter,
N.P. 2020. In vitro evaluation of the
anti-inflammatory effects of thymoquinone in osteoarthritis and in silico analysis of inter-related
pathways in age-related degenerative diseases. Frontiers in Cell and
Developmental Biology 8: 646.
Kanner, J.
2020. Polyphenols by generating H2O2, affect cell redox signaling, inhibit Ptps and
activate Nrf2 axis for adaptation and cell surviving: in vitro, in vivo and human health. Antioxidants 9 (9): 797.
Kanter, M., Coskun, O., Korkmaz, A. & Oter,
S. 2004. Effects of Nigella sativa on
oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. The
Anatomical Record 279A(1): 685-691.
Kawamori, D., Kajimoto, Y., Kaneto, H., Umayahara, Y., Fujitani, Y., Miyatsuka, T., Watada, H., Leibiger,
I., Yamasaki, Y. & Hori, M. 2003. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic
transcription factor PDX-1 through activation of c-Jun NH2-terminal kinase. Diabetes 52(12): 2896-2904.
Khan, M.A., Chen, H.C., Tania, M. & Zhang, D.Z. 2011.
Anticancer activities of Nigella sativa (black cumin). African Journal of Traditional, Complementary and Alternative
Medicines 8(5 Suppl): 226-232.
Kocsis, Á., Pasztorek, M., Rossmanith, E., Djinovic, Z.,
Mayr, T., Spitz, S., Zirath, H., Ertl,
P. & Fischer, M.B. 2021. Dependence of mitochondrial function on the
filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with
cytochalasin B. Journal of Bioscience and
Bioengineering 132(3): 310-320.
Kodavanti,
P.R., Royland, J.E., Richards, J.E., Besas, J. & Macphail, R.C.
2011. Toluene effects on oxidative stress in brain regions of young-adult,
middle-age, and senescent brown Norway rats. Toxicology and Applied
Pharmacology 256(3): 386-398.
Korak, T., Emel, E. & Ali, S. 2020. Nigella sativa and Cancer: A review focusing on breast cancer,
inhibition of metastasis and enhancement of natural killer cell cytotoxicity. Current
Pharmaceutical Biotechnology 21(12): 1176-1185.
Kuang, F.,
Liu, J., Tang, D. & Kang, R. 2020. Oxidative damage and antioxidant defense in ferroptosis. Frontiers in Cell and
Developmental Biology 8: 586578.
Leong, X.F., Mohd, R.M. & Kamsiah, J. 2013. Nigella
sativa and its protective role in oxidative stress and hypertension. Evidence-Based
Complementary and Alternative Medicine 2013: 253479.
Li, Y.J. & Chen, Z. 2022. Cell-based therapies for rheumatoid
arthritis: Opportunities and challenges. Therapeutic Advances in
Musculoskeletal Disease 14: 1759720X221100294.
Liu, T., Li, S., Yubin, Z., Yonglin, W. & Jiang, Z. 2021. Imbalanced GSH/ROS and
sequential cell death. Journal of Biochemical and Molecular Toxicology 36: e22942.
Long, L.H., Clement, M.V. & Halliwell, B. 2000. Artifacts in cell culture: Rapid generation of hydrogen
peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin
gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochemical
and Biophysical Research Communications 273(1): 50-53.
Mahmoud, Y.K. & Abdelrazek, H.M.A.
2019. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential
anticancer remedy. Biomedicine & Pharmacotherapy 115: 108783.
Mansour, M.A., Mahmoud, N.N., Aiman,
S.E. & Abdullah, M.A. 2002. Effects of thymoquinone on antioxidant enzyme
activities, lipid peroxidation and DT-diaphorase in different tissues of mice:
A possible mechanism of action. Cell Biochemistry and Function 20(2):
143-151.
Maraldi, T., Cristina, A., Cecilia, P. & Silvana, H. 2021.
NADPH oxidases: Redox regulators of stem cell fate and function. Antioxidants 10(6): 973.
Marnett, L.J.
2000. Oxyradicals and DNA damage. Carcinogenesis 21(3): 361-370.
Mattia, C.J., Ali, S.F. & Bondy,
S.C. 1993. Toluene-induced oxidative stress in several brain regions and other
organs. Molecular and Chemical Neuropathology 18(3): 313-328.
Mohammadi, S., Abolfazl, B., Alireza, D., Jaleh, B. & Yadollah, O. 2021. Astaxanthin protects mesenchymal stem
cells from oxidative stress by direct scavenging of free radicals and
modulation of cell signalling. Chemico-Biological
Interactions 333: 109324.
Mondal, S., Bandyopadhyay, S., Ghosh, M.K., Mukhopadhyay, S., Roy,
S. & Mandal, C. 2012. Natural products: Promising resources for cancer drug
discovery. Anti-Cancer Agents in Medicinal Chemistry 12(1): 49-75.
Mu, X., Tseng, C., Hambright, W.S., Matre, P., Lin, C.Y., Chanda, P., Chen, W., Gu, J., Ravuri, S., Cui, Y., Zhong, L., Cooke, J.P., Niedernhofer, L.J., Robbins, P.D. & Huard, J. 2020.
Cytoskeleton stiffness regulates cellular senescence and innate immune response
in Hutchinson-Gilford
Progeria Syndrome. Aging Cell 19(8): e13152.
Negi, P., Sharma, I., Hemrajani, C.,
Rathore, C., Bisht, A., Raza, K. & Katare, O.P.
2019. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for
psoriasis. BMC Complementary Medicine and Therapies 19(1): 334.
Ng, W.K., Latifah, S.Y. & Maznah, I.
2011. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein. Toxicology in
Vitro 25(7): 1392-1398.
Rahmani,
A.H., Mohammad, A.A., Masood, A.K. & Salah, M.A. 2014. Therapeutic
implications of black seed and its constituent thymoquinone in the prevention
of cancer through inactivation and activation of molecular pathways. Evidence-Based
Complementary and Alternative Medicine 2014: 724658.
Ray, P.D., Huang, B.W. & Tsuji, Y. 2012. Reactive oxygen
species (ROS) homeostasis and redox regulation in cellular signalling. Cell
Signal 24(5): 981-990.
Robinson, M.M., Bergen, K.S., Emily, R.B., Sarah, E.E., Harrison,
D.S., Maria, C.F. & Sean, A.N. 2019. Robust intrinsic differences in
mitochondrial respiration and H2O2 emission between L6
and C2C12 cells. American Journal of Physiology-Cell Physiology 317(2):
C339-C347.
Sahak,
M.K.A., Kabir, N., Abbas, G., Draman, S., Hashim,
N.H. & Hasan Adli, D.S. 2016. The role of Nigella sativa and its active
constituents in learning and memory. Evidence-Based Complementary and
Alternative Medicine 2016:
6075679.
Samarghandian, S.,
Mohsen, A.N. & Tahereh, F. 2019.
Thymoquinone-induced antitumor and apoptosis in human lung adenocarcinoma
cells. Journal of Cellular Physiology 234(7): 10421-10431.
Sankaranarayanan, C.
& Pari, L. 2011. Thymoquinone ameliorates chemical induced oxidative stress
and β-cell damage in experimental hyperglycemic rats. Chemico-Biological Interactions 190: 148-54.
Sassoli, C., Pierucci, F., Tani, A., Frati, A., Chellini, F., Matteini, F., Vestri, A., Anderloni, G., Nosi, D., Zecchi-Orlandini, S. & Meacci,
E. 2018. Sphingosine 1-Phosphate Receptor 1 is required for MMP-2 function in
bone marrow mesenchymal stromal cells: Implications for cytoskeleton assembly
and proliferation. Stem Cells International 2018: 5034679.
Schaefer, A.W., Nurul, K. & Forscher,
P. 2002. Filopodia and actin arcs guide the assembly and transport of two
populations of microtubules with unique dynamic parameters in neuronal growth
cones. The Journal of Cell Biology 158(1): 139-152.
Schneider, C., Rasband, W. & Eliceiri, K. 2012. NIH image to ImageJ: 25 years of image
analysis. Nature Methods 9(7): 671-675.
Shanmugam, M., Ahn, K., Hsu, A., Woo,
C., Yuan, Y., Tan, K., Chinnathambi, A., Alahmadi, T., Alharbi, S., Koh,
A., Arfuso, F., Huang, R., Lim, L., Sethi, G. & Kumar, A. 2018. Thymoquinone inhibits bone
metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Frontiers in Pharmacology 9: 1294.
Sharifi-Rad, M., Nanjangud, V.A.K.,
Paolo, Z., Elena, M.V., Luciana, D., Elisa, P., Jovana, R., Tsouh Fokou, P.V., Azzini, E.,
Peluso, I., Prakash, M.A., Nigam, M., El Rayess, Y., Beyrouthy, M.E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea,
A.O., Setzer, W. N., Calina, D., Cho, W.C. &
Sharifi-Rad, J. 2020. Lifestyle, oxidative stress, and antioxidants: Back and
forth in the pathophysiology of chronic diseases. Frontiers in Physiology 11: 694.
Sies, H.
2019. Chapter 13 - Oxidative stress: Eustress and distress in redox
homeostasis. In Stress: Physiology,
Biochemistry, and Pathology, edited by Fink, G. Massachusetts: Academic Press. pp. 153-163.
Smajilagić, A., Mufida, A., Amira, R., Selma, F. & Alena, L. 2013. Rat
bone marrow stem cells isolation and culture as a bone formative experimental
system. Bosnian Journal of Basic Medical Sciences 13(1): 27-30.
Stadtman, E.R.
& Levine, R.L. 2000. Protein oxidation. Annals of the New York Academy
of Sciences 899: 191-208.
Szanto, I.,
Marc, P. & Maria, M. 2019. H2O2 metabolism in normal
thyroid cells and in thyroid tumorigenesis: Focus on NADPH oxidases. Antioxidants 8(5): 126.
Uttara, B., Singh, A.V., Zamboni, P. & Mahajan, R.T. 2009.
Oxidative stress and neurodegenerative diseases: A review of upstream and
downstream antioxidant therapeutic options. Current Neuropharmacology 7(1): 65-74.
Vermes, I., Haanen, C., Steffens-Nakken, H. & Reutelingsperger,
C. 1995. A novel assay for apoptosis. Flow cytometric detection of
phosphatidylserine expression on early apoptotic cells using fluorescein
labelled Annexin V. Journal of Immunological Methods 184(1): 39-51.
Vijayamalini, M.
& Manoharan, S. 2004. Lipid peroxidation, vitamins C, E and reduced
glutathione levels in patients with pulmonary tuberculosis. Cell
Biochemistry and Function 22(1): 19-22.
Wei, H., Zongwei, L., Shengshou, H., Xi, C. & Xiangfeng,
C. 2010. Apoptosis of mesenchymal stem cells induced by hydrogen peroxide
concerns both endoplasmic reticulum stress and mitochondrial death pathway
through regulation of caspases, p38 and JNK. Journal of Cellular
Biochemistry 111(4): 967-978.
Zakaria, A.F., Latifah, S., Wan, K., Khong,
K.C., Ng, Y., Foong, J.N., Gopalsamy,
B., Ng, W.K., How, C.W., Ong, Y.S., Abdullah, R. & Aziz, M.Y. 2020.
Pharmacokinetics and biodistribution of thymoquinone-loaded nanostructured
lipid carrier after oral and intravenous administration into rats. International
Journal of Nanomedicine 15: 7703-7717.
Zubair, H., Khan, H.Y., Sohail, A.,
Azim, S., Ullah, M.F., Ahmad, A., Sarkar, F.H. & Hadi,
S.M. 2013. Redox cycling of endogenous copper by thymoquinone leads to
ROS-mediated DNA breakage and consequent cell death: Putative anticancer
mechanism of antioxidants. Cell Death and Disease 4(6): e660.
*Pengarang untuk surat-menyurat; email:
nurul.kabir@um.edu.my
|