Sains Malaysiana 52(1)(2023): 47-56
http://doi.org/10.17576/jsm-2023-5201-04
Hyperglycaemia Attenuated C2C12
Myoblast Proliferation and Induced Skeletal Muscle Atrophy via Modulating
Myogenic Regulatory Factors Genes Expression in Diabetic Rats
(Hiperglisemia Dilemahkan C2C12 Pembiakan Mioblas dan Atrofi Otot Rangka Terinduksi melalui Modulasi Faktor Kawalaturan Miogenesis Ekspresi Gen dalam Tikus Diabetis)
CHITTIPONG TIPBUNJONG1,2,*, WIPAPAN KHIMMAKTONG1, CHUMPOL
PHOLPRAMOOL3 & PIYAPORN
SURINLERT4
1Division of Health and Applied Sciences,
Faculty of Science, Prince of Songkla University,
Songkhla 90110, Thailand
2Gut Biology and Microbiota Research Unit,
Prince of Songkla University, Songkhla 90110, Thailand
3Department of Physiology, Faculty of
Science, Mahidol University, Bangkok 10400, Thailand
4Chulabhorn International College of
Medicine, Thammasat University, Pathum Thani 12120, Thailand
Diserahkan: 18 Januari 2022/Diterima: 3 November
2022
Abstract
Diabetes mellitus is
characterised by high blood glucose level termed hyperglycaemia (HG). It has been reported to affect skeletal
muscle by inducing skeletal muscle atrophy and skeletal muscle protein
degradation leading to impairment of muscle function. This
study aimed to investigate the effects of HG on the expression of myogenic
regulatory factor genes in muscle progenitor cells and in skeletal muscle. The
number of C2C12 myoblasts cultured in HG condition was significantly decreased
compared to control in dose and time dependent manner. In addition, the number
of Ki-67 positive nuclei was significantly decreased after treatment under HG
condition. Real time PCR showed significant suppression of MyoD and myogenin, while Myf5 gene expression was significantly
enhanced, compared to control. Furthermore, histological examinations of muscle
fibres showed atrophy of tibialis anterior (TA) muscle from diabetic rats. The
frequency of distribution of muscle fibre cross-sectional area (MCA) in
diabetic rats was shifted leftward from that of normal control rats. In
contrast, the MyoD and myogenin expression in TA muscle of diabetic rats were significantly increased compared
to normal control rats. This study provides
novel knowledge on the changing myogenic regulatory factor gene expression in
hyperglycaemic condition, both in vitro and in vivo, leading to
skeletal muscle atrophy.
Keywords: Atrophy; diabetes; myoblast;
myogenesis; skeletal muscle
Abstrak
Diabetes mellitus dicirikan oleh tahap glukosa darah yang tinggi dipanggil hiperglisemia (HG). Ia telah dilaporkan menjejaskan otot rangka dengan mengaruh atrofi otot rangka dan degradasi protein otot rangka yang membawa kepada kemerosotan fungsi otot. Kajian ini bertujuan untuk mengkaji kesan HG ke atas pengekspresan gen faktor pengawalaturan miogenik dalam sel progenitor otot dan dalam otot rangka. Bilangan mioblas C2C12 yang dibiakkan dalam keadaan HG berkurangan dengan ketara berbanding dengan kawalan yang bergantung kepada dos dan masa.
Di samping itu, bilangan nukleus positif Ki-67 berkurangan dengan ketara selepas rawatan dalam keadaan HG. PCR masa nyata menunjukkan penindasan signifikan MyoD dan miogenin, manakala pengekspresan gen Myf5 meningkat dengan signifikan, berbanding kawalan. Tambahan pula, pemeriksaan histologi gentian otot mendedahkan atrofi otot tibialis anterior (TA) bagi tikus diabetes. Kekerapan taburan kawasan keratan rentas gentian otot (MCA) pada tikus diabetes dianjak ke kiri berbanding tikus kawalan normal. Sebaliknya, pengekspresan MyoD dan miogenin dalam otot TA tikus diabetes meningkat dengan ketara berbanding tikus kawalan normal. Kajian ini memberikan pengetahuan baharu tentang perubahan pengekspresan gen faktor pengawalaturan miogenik dalam keadaan hiperglisemik yang membawa kepada atrofi otot rangka bagi kedua-dua keadaan in vitro dan in vivo.
Kata kunci: Atrofi; diabetes; mioblas; miogenesis; otot rangka
RUJUKAN
Acharya,
S., Peters, A., Norton, A., Murdoch, G. & Hill, R. 2013. Change in Nox4
expression is accompanied by changes in myogenic marker expression in
differentiating C2C12 myoblasts. Pflügers Archiv-European Journal of Physiology 465(8):
1181-1196.
Aguiar,
A.F., Vechetti-Junior, I.J., De Souza, R.A., Castan, E.P., Milanezi-Aguiar,
R.C., Padovani, C.R., Carvalho, R.F. & Silva,
M.D.P. 2013. Myogenin, MyoD and IGF-I regulate muscle mass but not fibre-type conversion during resistance
training in rats. International Journal of Sports Medicine 34(4):
293-301.
Always,
S.E. & Lowe, D.A. 2001. The effects of age and hindlimb suspension on the
levels of expression of the myogenic regulatory factors MyoD and myogenin in rat fast and slow skeletal muscles. Experimental
Physiology 86(4): 509-517.
Arnold,
R., Kwai, N.C. & Krishnan, A.V. 2013. Mechanisms
of axonal dysfunction in diabetic and uraemic neuropathies. Clinical Neurophysiology 124(11): 2079-2090.
Asakura, A., Hirai, H., Kablar, B., Morita, S., Ishibashi, J., Piras,
B.A., Christ, A.J., Verma, M., Vineretsky, K.A. & Rudnicki, M.A. 2007. Increased survival of muscle
stem cells lacking the MyoD gene after
transplantation into regenerating skeletal muscle. Proceedings of the
National Academy of Sciences 104(42): 16552-16557.
Asfour, H.A., Allouh, M.Z. & Said, R.S. 2018. Myogenic regulatory
factors: The orchestrators of myogenesis after 30 years of discovery. Experimental
Biology and Medicine 243(2): 118-128.
Baptista,
F.I., Pinheiro, H., Gomes, C.A. & Ambrósio, A.F.
2019. Impairment of axonal transport in diabetes: Focus on the putative
mechanisms underlying peripheral and central neuropathies. Molecular
Neurobiology 56(3): 2202-2210.
Bravard, A., Bonnard, C.,
Durand, A., Chauvin, M.A., Favier, R., Vidal, H. & Rieusset,
J. 2011. Inhibition of xanthine oxidase reduces hyperglycaemia-induced
oxidative stress and improves mitochondrial alterations in skeletal muscle of
diabetic mice. American Journal of Physiology-Endocrinology and Metabolism 300(3): 581-591.
Buranasin, P., Mizutani, K., Iwasaki, K., Pawaputanon Na Mahasarakham, C., Kido, D., Takeda, K. &
Izumi, Y. 2018. High glucose-induced oxidative stress impairs proliferation and
migration of human gingival fibroblasts. PLoS ONE 13(8): e0201855.
Cai,
Y., Zhan, H., Weng, W., Wang, Y., Han, P., Yu, X., Shao, M. & Sun, H. 2021. Niclosamide ethanolamine ameliorates diabetes-related
muscle wasting by inhibiting autophagy. Skeletal Muscle 11(1): 15.
Caldow, M.K., Thomas,
E.E., Dale, M.J., Tomkinson, G.R., Buckley, J.D. & Cameron‐Smith, D.
2015. Early myogenic responses to acute exercise before and after resistance
training in young men. Physiological Reports 3(9): e12511.
Culbreth,
M. & Rand, M.D. 2020. Methylmercury modifies temporally expressed myogenic
regulatory factors to inhibit myoblast differentiation. Toxicology in Vitro 63: 104717.
Dedkov, E.I., Kostrominova, T.Y., Borisov, A.B. & Carlson, B.M. 2003. MyoD and myogenin protein
expression in skeletal muscles of senile rats. Cell and Tissue Research 311(3): 401-416.
Di
Filippo, E.S., Mancinelli, R., Pietrangelo, T., La Rovere, R.M.L., Quattrocelli, M., Sampaolesi, M. & Fulle,
S. 2016. Myomir dysregulation and reactive oxygen
species in aged human satellite cells. Biochemical and Biophysical Research
Communications 473(2): 462-470.
Fatrai, S., Elghazi, L., Balcazar, N., Cras-Méneur, C., Krits, I., Kiyokawa, H. & Bernal-Mizrachi, E. 2006. Akt induces beta-cell proliferation by regulating cyclin
D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 55(2): 318-325.
Furuichi, Y., Kawabata,
Y., Aoki, M., Mita, Y., Fujii,
N.L. & Manabe, Y. 2021. Excess glucose impedes the proliferation of
skeletal muscle satellite cells under adherent culture conditions. Frontiers
in Cell and Developmental Biology 9: 640399.
Ganassi,
M., Badodi, S., Wanders, K., Zammit, P.S. &
Hughes, S.M. 2020. Myogenin is an essential regulator
of adult myofibre growth and muscle stem cell
homeostasis. Elife 9: e60445.
Han,
J., Zhang, L., Guo, H., Wysham, W.Z., Roque, D.R., Willson, A.K., Sheng, X., Zhou, C. & Bae-Jump, V.L.
2015. Glucose promotes cell proliferation, glucose uptake and invasion in
endometrial cancer cells via AMPK/mTOR/S6 and MAPK signalling. Gynecologic Oncology 138(3): 668-675.
Hirai,
H., Verma, M., Watanabe, S., Tastad, C., Asakura, Y. & Asakura, A.
2010. MyoD regulates apoptosis of myoblasts through
microRNA-mediated down-regulation of Pax3. Journal of Cell Biology 191(2): 347-365.
Hirata,
Y., Nomura, K., Senga, Y., Okada, Y., Kobayashi, K., Okamoto, S., Minokoshi, Y., Imamura, M., Takeda, S., Hosooka,
T. & Ogawa, W. 2019. Hyperglycaemia induces skeletal muscle atrophy via a
WWP1/KLF15 axis. JCI Insight 4(4): e124952.
Horsophonphong, S., Kitkumthorn, N., Sritanaudomchai,
H., Nakornchai, S. & Surarit,
R. 2020. High glucose affects proliferation, reactive oxygen species and
mineralization of human dental pulp cells. Brazilian Dental Journal 31:
298-303.
Hou,
Y., Zhou, M., Xie, J., Chao, P., Feng, Q. & Wu,
J. 2017. High glucose levels promote the proliferation of breast cancer cells
through GTPases. Breast Cancer: Targets and Therapy 9: 429-436.
Huang,
Z., Fang, Q., Ma, W., Zhang, Q., Qiu, J., Gu, X.,
Yang, H. & Sun, H. 2019. Skeletal muscle atrophy was alleviated by
salidroside through suppressing oxidative stress and inflammation during
denervation. Frontiers in Pharmacology 10: 997.
Ishibashi,
J., Perry, R.L., Asakura, A. & Rudnicki, M.A. 2005. MyoD induces
myogenic differentiation through cooperation of its NH2- and COOH-terminal
regions. Journal of Cell Biology 171(3): 471-482.
Ito,
M., Makino, N., Matsuda, A., Ikeda, Y., Kakizaki, Y.,
Saito, Y., Ueno, Y. & Kawata, S. 2017. High
glucose accelerates cell proliferation and increases the secretion and mRNA
expression of osteopontin in human pancreatic duct
epithelial cells. International Journal of Molecular Sciences 18(4):
807.
Krivickas, L.S., Dorer, D.J., Ochala, J. &
Frontera, W.R. 2011. Relationship between force and size in human single muscle
fibres. Experimental Physiology 96(5): 539-547.
Macpherson,
P.C., Wang, X. & Goldman, D. 2011. Myogenin regulates denervation‐dependent muscle atrophy in mouse soleus muscle. Journal
of Cellular Biochemistry 112(8): 2149-2159.
Matsumoto,
N., Omagari, D., Ushikoshi-Nakayama,
R., Yamazaki, T., Inoue, H. & Saito, I. 2021. Hyperglycaemia induces
generation of reactive oxygen species and accelerates apoptotic cell death in
salivary gland cells. Pathobiology 88: 234-241.
Muller,
K.A., Ryals, J.M., Feldman, E.L. & Wright, D.E.
2008. Abnormal muscle spindle innervation and large-fibre neuropathy in
diabetic mice. Diabetes 57(6): 1693-1701.
Panda, A.C., Abdelmohsen, K.,
Martindale, J.L., Di Germanio, C., Yang, X., Grammatikakis, I., Noh, J.H., Zhang, Y., Lehrmann, E., Dudekula, D.B., De,
S., Becker, K.G., White, E.J., Wilson, G.M., de Cabo, R. & Gorospe, M.
2016. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA
translation during myogenesis. Nucleic Acids Research 44(5): 2393-2408.
Parasoglou, P., Rao, S.
& Slade, J.M. 2017. Declining skeletal muscle function in diabetic
peripheral neuropathy. Clinical Therapeutics 39(6): 1085-1103.
Pizarro,
J.G., Folch, J., Vazquez De la Torre, A., Verdaguer, E., Junyent, F., Jordán, J., Pallàs, M. & Camins, A. 2009.
Oxidative stress-induced DNA damage and cell cycle regulation in B65
dopaminergic cell line. Free Radical Research 43(10): 985-994.
Powers,
S.K., Smuder, A.J. & Criswell, D.S. 2011.
Mechanistic links between oxidative stress and disuse muscle atrophy. Antioxidants
& Redox Signalling 15(9): 2519-2528.
Poy, M.N., Spranger, M. & Stoffel, M. 2007. microRNAs and
the regulation of glucose and lipid metabolism. Diabetes, Obesity and
Metabolism 9(Suppl 2): 67-73.
Qiu, D., Zhang, L.,
Zhan, J., Yang, Q., Xiong, H., Hu, W., Ji, Q. &
Huang, J. 2020. Hyperglycaemia decreases epithelial cell proliferation and
attenuates neutrophil activity by reducing ICAM-1 and LFA-1 expression levels. Frontiers
in Genetics 11: 616988.
Quinn,
M.E., Goh, Q., Kurosaka, M., Gamage, D.G., Petrany, M.J., Prasad, V. & Millay, D.P. 2017. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nature Communications 8(1): 15665.
Relaix, F., Bencze, M., Borok, M.J., Der Vartanian, A., Gattazzo, F., Mademtzoglou, D., Perez-Diaz, S., Prola,
A., Reyes-Fernandez, P.C., Rotini, A. & Taglietti,
V. 2021. Perspectives on skeletal muscle stem cells. Nature Communications 12: 692.
Robinson,
M.M., Dasari, S., Karakelides,
H., Bergen 3rd., H.R. & Nair, K.S. 2016. Release of skeletal muscle peptide
fragments identifies individual proteins degraded during insulin deprivation in
type 1 diabetic humans and mice. American Journal of Physiology - Endocrinology
and Metabolism 311(3): E628-E637.
Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24(10): 453-462.
Shahini, A., Choudhury,
D., Asmani, M., Zhao, R., Lei, P. & Andreadis, S.T. 2018. NANOG restores the impaired myogenic
differentiation potential of skeletal myoblasts after multiple population
doublings. Stem Cell Research 26: 55-66.
Shintaku, J., Peterson,
J.M., Talbert, E.E., Gu, J.M., Ladner, K.J., Williams, D.R., Mousavi, K., Wang,
R., Sartorelli, V. & Guttridge, D.C. 2016. MyoD regulates skeletal muscle oxidative metabolism
cooperatively with alternative NF-κB. Cell
Reports 17(2): 514-526.
Shirakawa,
T., Toyono, T., Inoue, A., Matsubara, T., Kawamoto,
T. & Kokabu, S. 2022. Factors regulating or
regulated by myogenic regulatory factors in skeletal muscle stem cells. Cells 11(9): 1493.
Sosa,
P., Alcalde-Estévez, E., Asenjo-Bueno,
A., Plaza, P., Carrillo-López, N., Olmos, G., López-Ongil,
S. & Ruiz-Torres, M.P. 2021. Aging-related hyperphosphatemia impairs
myogenic differentiation and enhances fibrosis in skeletal muscle. Journal
of Cachexia, Sarcopenia and Muscle 12(5): 1266-1279.
Spassov, A., Gredes, T., Gedrange, T., Lucke, S., Pavlovic, D. & Kunert-Keil,
C. 2011. The expression of myogenic regulatory factors and muscle growth
factors in the masticatory muscles of dystrophin-deficient (mdx) mice. Cellular
& Molecular Biology Letters 16(2): 214-225.
Surinlert, P., Kongthong, N., Watthanard, M.,
Sae-Lao, T., Sookbangnop, P., Pholpramool,
C. & Tipbunjong, C. 2020. Styrene oxide caused
cell cycle arrest and abolished myogenic differentiation of C2C12 myoblasts. Journal
of Toxicology 2020: 1807126.
Surinlert, P., Thitiphatphuvanon, T., Khimmaktong,
W., Pholpramool, C. & Tipbunjong,
C. 2021. Hyperglycaemia induced C2C12 myoblast cell cycle arrest and skeletal
muscle atrophy by modulating sirtuins gene expression
in rats. Polish Journal of Veterinary Sciences 24(4): 563-572.
Varma,
S., Lal, B.K., Zheng, R., Breslin, J.W., Saito, S., Pappas, P.J., Hobson 2nd.,
R.W. & Durán, W.N. 2005. Hyperglycemia alters
PI3k and Akt signaling and
leads to endothelial cell proliferative dysfunction. American Journal of
Physiology - Heart and Circulatory Physiology 289(4): 1744-1751.
Wüst, S., Dröse, S., Heidler, J., Wittig,
I., Klockner, I., Franko, A., Bonke, E., Günther, S., Gärtner, U., Boettger, T.
& Braun, T. 2018. Metabolic maturation during muscle stem cell
differentiation is achieved by miR-1/133a-mediated inhibition of the Dlk1-Dio3
mega gene cluster. Cell Metabolism 27(5): 1026-1039.
Zacarías-Flores, M.,
Sánchez-Rodríguez, M.A., García-Anaya, O.D., Correa-Muñoz, E. & Mendoza-Núñez, V.M. 2018. Relationship between oxidative stress and
muscle mass loss in early postmenopause: An
exploratory study. Endocrinología, Diabetes
y Nutrición 65(6): 328-334.
Zammit,
P.S. 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in
skeletal muscle, satellite cells and regenerative myogenesis. Seminars in
Cell & Developmental Biology 72: 19-32.
Zheng,
Y., Zhao, C., Zhang, N., Kang, W., Lu, R., Wu, H., Geng,
Y., Zhao, Y. & Xu, X. 2018. Serum microRNA miR-206 is decreased in
hyperthyroidism and mediates thyroid hormone regulation of lipid metabolism in
HepG2 human hepatoblastoma cells. Molecular Medicine Reports 17:
5635-5641.
*Pengarang untuk surat-menyurat; email:
chittipong.t@psu.ac.th
|