Sains Malaysiana
52(2)(2023): 441-465
http://doi.org/10.17576/jsm-2023-5202-10
Artocarpus heterophyllus Lam. Stem Bark
Inhibits Melanogenesis through Regulation of ROS, cAMP, and MAPK Pathways
(Artocarpus heterophyllus Lam. Kulit
Batang Merencat Melanogenesis melalui Pengawalaturan Laluan ROS, cAMP dan MAPK)
HAZWANI
MAT SAAD1, CHUN HOE TAN2, SUGUMARAN MANICKAM3,
SIEW HUAH LIM4 & KAE SHIN SIM1,*
1Institute
of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor
Diraja Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia
2Department
of Biotechnology, Faculty of Applied Science, Lincoln University, 47301
Petaling Jaya, Selangor Darul Ehsan, Malaysia
3Rimba
Ilmu Botanical Garden, UM Sustainability Development Centre, Level 6, Research
and Innovation Management Complex, Universiti Malaya, Jalan Profesor Diraja
Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia
4Department
of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja
Ungku Aziz, 50603 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan:
17 Ogos 2022/Diterima: 23 November 2022
Abstract
Natural-based skin-lightening cosmeceutical products are
attracting high popularity nowadays due to their relatively high
bioavailability upon application. Artocarpus species have been
highlighted with such potential, and our previous studies have reported that Artocarpus
heterophyllus Lam. stem bark extract exhibited a potent anti-melanogenic
activity by reducing melanin content and inhibiting cellular tyrosinase
activity in B16F10 melanoma cells. Hence, this study
aimed to identify
the bioactive fraction from A. heterophyllus Lam. stem bark and
determine its anti-melanogenic mechanisms in B16F10 melanoma cells. Our results showed that
a fraction (H-3) demonstrated the most pronounced anti-melanogenic effect at
12.00 µg/mL by reducing melanin content to 22.86 ± 2.90% and inhibiting cellular tyrosinase
activity at treatment concentration 33-fold lower than kojic acid, without being cytotoxic against B16F10 melanoma cells.
Moreover, treatment with H-3 for 24 and 48 h substantially scavenged
intracellular reactive oxygen species (ROS) of hydrogen peroxide-challenged
B16F10 melanoma cells by 1.8 and 4.4%,
respectively. Based on the microarray profiling and qPCR analysis, H-3
downregulated Creb3l1, Creb3l2, Creb3l3, Mitf, Tyr, Tyrp1, and Dct genes in B16F10 melanoma cells, whereas
the expression of Map3k20, Mapk14 (p38), and Foxo3 genes was
markedly increased. Altogether, these results demonstrated that H-3 exhibited
its anti-melanogenic activity in B16F10 melanoma cells through scavenging ROS
and concurrent inhibition of the cAMP and activation of the p38/MAPK signaling
pathways. These
findings indicate that H-3 has the potential to be used as a skin lightening
cosmeceutical agent in the treatment of skin hyperpigmentation.
Keywords: B16F10 melanoma cells; melanin; microarray profiling; microphthalmia-associated transcription
factor; tyrosinase
Abstrak
Produk kosmetik
pencerah kulit berasaskan sumber semula jadi mempunyai kepopularan yang tinggi
pada masa kini kerana bioketersediaannya yang tinggi apabila digunakan. Spesies Artocarpus telah diserlahkan dengan potensi sedemikian dan kajian kami
yang terdahulu telah melaporkan bahawa ekstrak kulit batang Artocarpus heterophyllus Lam. menunjukkan aktiviti anti-melanogenik yang kuat dengan menurunkan
kandungan melanin serta menghalang aktiviti tirosinase sel pada sel melanoma
B16F10. Oleh itu, kajian ini bertujuan untuk mengenal pasti
fraksi bioaktif daripada kulit batang A. heterophyllus Lam. dan
menentukan mekanisme anti-melanogenesis dalam sel melanoma B16F10. Hasil menunjukkan bahawa fraksi H-3
menunjukkan kesan anti-melanogenik yang ketara pada 12.00 µg/mL dengan
menurunkan kandungan melanin kepada 22.86 ± 2.90% serta menghalang aktiviti
tirosinase sel pada kepekatan 33 kali ganda lebih rendah berbanding asid kojik
tanpa kesan ketoksikan pada sel melanoma B16F10. Tambahan pula, rawatan dengan
H-3 selama 24 dan 48 jam dapat menghapuskan spesies oksigen reaktif (ROS)
intrasel daripada sel melanoma B16F10 yang dicabar dengan H2O2 dengan ketara masing-masing sebanyak 1.8 dan 4.4%. Berdasarkan profil jujukan
mikroarai dan analisis qPCR, H-3 menurunkan pengekspresan gen Creb3l1,
Creb3l2, Creb3l3, Mitf, Tyr, Tyrp1 dan Dct dalam
sel B16F10, manakala pengekspresan gen Map3k20, Mapk14 (p38), dan Foxo3 telah meningkat dengan ketara. Secara amnya, keputusan ini
menunjukkan bahawa H-3 menunjukkan aktiviti anti-melanogenesis dalam sel
melanoma B16F10 dengan mengikis ROS intrasel dan pada masa yang sama menghalang
laluan isyarat cAMP serta mengaktifkan isyarat laluan p38/MAPK. Penemuan ini
menunjukkan bahawa H-3 berpotensi untuk digunakan sebagai agen kosmetik
pencerah kulit dalam rawatan hiperpigmentasi kulit.
Kata kunci: Faktor
transkripsi berkaitan mikroftalmia; melanin; profil mikroatur; sel melanoma
B16F10; tirosinase
RUJUKAN
Alam,
M.B., Ahmed, A., Motin, M.A., Kim, S. & Lee, S.H. 2018. Attenuation of
melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and
proteasomal degradation of tyrosinase. Scientific
Reports 8(1): 13928.
Alam, M.B., Bajpai, V.K., Lee, J., Zhao, P., Byeon,
J.H., Ra, J.S., Majumder, R., Lee, J.S., Yoon, J.I., Rather, I.A., Park, Y.H.,
Kim, K., Na, M. & Lee, S.H. 2017. Inhibition of melanogenesis by jineol
from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of
tyrosinase. Scientific Reports 7(1):
45858.
Arung, E.T., Shimizu, K. & Kondo, R. 2011. Artocarpus plants as a potential source
of skin whitening agents. Natural Product
Communications 6(9): 1397-1402.
Arung, E.T., Shimizu, K. & Kondo, R. 2006.
Inhibitory effect of artocarpanone from Artocarpus
heterophyllus on melanin biosynthesis. Biological
and Pharmaceutical Bulletin 29(9): 1966-1969.
Bellei, B., Maresca, V., Flori, E., Pitisci, A.,
Larue, L. & Picardo, M. 2010. p38 regulates pigmentation via proteasomal
degradation of tyrosinase. Journal of
Biological Chemistry 285(10): 7288-7299.
Bino, S.D., Duval, C. & Bernerd, F. 2018. Clinical
and biological characterization of skin pigmentation diversity and its
consequences on UV impact. International
Journal of Molecular Sciences 19(9): 2668.
Bult, C.J., Blake, J.A., Smith, C.L., Kadin, J.A.,
Richardson, J.E. & The Mouse Genome Database Group. 2019. Mouse genome
database (MGD) 2019. Nucleic Acids
Research 47(D1): D801-D806.
Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J.,
Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L.,
Vandesompele, J. & Wittwer, C.T. 2009. The MIQE guidelines: Minimum
information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55(4): 611-622.
Carlson, J.A., Linette, G.P., Aplin, A., Ng, B. &
Slominski, A. 2007. Melanocyte receptors: Clinical implications and therapeutic
relevance. Dermatologic Clinics 25(4): 541-557.
Chaikul, P., Lourith, N. & Kanlayavattanakul, M.
2017. Antimelanogenesis and cellular antioxidant activities of rubber (Hevea brasiliensis) seed oil for
cosmetics. Industrial Crops and Products 108: 56-62.
Chiang, H.M., Chien, Y.C., Wu, C.H., Kuo, Y.H., Wu,
W.C., Pan, Y.Y., Su, Y.H. & Wen, K.C. 2014. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its
hydrolysate inhibit melanogenesis in B16F0 cells by regulating the
CREB/MITF/tyrosinase pathway. Food and
Chemical Toxicology 65: 129-139.
Fu, Y.H., Guo, J.M., Xie, Y.T., Yu, X.M., Su, Q.T.,
Qiang, L., Kong, L.Y. & Liu, Y.P. 2020. Prenylated chromones from the fruits of Artocarpus heterophyllus and their potential anti-HIV-1 activities. Journal of Agricultural and Food
Chemistry 68(7): 2024-2030.
Glick, D., Barth, S. & Macleod, K.F. 2010.
Autophagy: Cellular and molecular mechanisms. The Journal of Pathology 221(1): 3-12.
Gotoh, I., Adachi, M. & Nishida, E. 2001.
Identification and characterization of a novel MAP kinase kinase kinase, MLTK. Journal of Biological Chemistry 276(6):
4276-4286.
Greenwood, M.P., Greenwood, M., Gillard, B.T., Chitra
Devi, R. & Murphy, D. 2017. Regulation of cAMP responsive element binding
protein 3-Like 1 (Creb3l1) expression by orphan nuclear receptor Nr4a1. Frontiers in Molecular Neuroscience 10:
413.
Guo, Y.Q., Tang, G.H., Lou, L.L., Li, W., Zhang, B.,
Liu, B. & Yin, S. 2018. Prenylated flavonoids as potent phosphodiesterase-4
inhibitors from Morus alba:
Isolation, modification, and structure-activity relationship study. European Journal of Medicinal Chemistry 144: 758-766.
Hsiao, J.J. & Fisher, D.E. 2014. The roles of
microphthalmia-associated transcription factor and pigmentation in melanoma. Archives of Biochemistry and Biophysics 563: 28-34.
Hwang, Y., Lee, J., Jung, H.J., Ullah, S., Ko, J.,
Jeong, Y., Park, Y.J., Kang, M.K., Yun, H., Kim, M.S., Chun, P., Chung, H.Y.
& Moon, H.R. 2022. A novel class of potent anti-tyrosinase compounds with
antioxidant activity, 2-(substituted
phenyl)-5-(trifluoromethyl)benzo[d]thiazoles: in vitro and in silico insights. Antioxidants 11(7): 1375.
Jagtap, U. & Bapat, V. 2010. Artocarpus: A review of its traditional uses, phytochemistry and
pharmacology. Journal of
Ethnopharmacology 129(2): 142-166.
Jeong, D., Park, S.H., Kim, M.H., Lee, S., Cho, Y.K.,
Kim, Y.A., Park, B.J., Lee, J., Kang, H. & Cho, J.Y. 2020. Anti-melanogenic
effects of ethanol extracts of the leaves and roots of Patrinia villosa (Thunb.) juss through their inhibition of CREB and
induction of ERK and autophagy. Molecules 25(22): 5375.
Kanehisa, M. & Goto, S. 2000. KEGG: Kyoto
encyclopedia of genes and genomes. Nucleic
Acids Research 28(1): 27-30.
Kawakami, A. & Fisher, D.E. 2017. The master role
of microphthalmia-associated transcription factor in melanocyte and melanoma
biology. Laboratory Investigation 97(6): 649-656.
Keshet, Y. & Seger, R. 2010. The MAP kinase signaling cascades: A system of hundreds of components
regulates a diverse array of physiological functions. In MAP Kinase Signaling Protocols. Methods in
Molecular Biology (Methods and Protocols), edited by Seger, R. Totowa:
Humana Press.
Kim, E.S., Park, S.J., Goh, M.J., Na, Y.J., Jo, D.S.,
Jo, Y.K., Shin, J.H., Choi, E.S., Lee, H.K., Kim, J.Y., Jeon, H.B., Kim, J.C.
& Cho, D.H. 2014. Mitochondrial dynamics regulate melanogenesis through
proteasomal degradation of MITF via ROS-ERK activation. Pigment Cell & Melanoma Research 27(6): 1051-1062.
Kim, J., Choi, H., Cho, E.G. & Lee, T.R. 2014.
FoxO3a is an antimelanogenic factor that mediates antioxidant-induced
depigmentation. Journal of Investigative
Dermatology 134(5): 1378-1388.
Kim, J.Y., Kim, J., Ahn, Y., Lee, E.J., Hwang, S.,
Almurayshid, A., Park, K., Chung, H.J., Kim, H.J., Lee, S.H., Lee, M.S. &
Oh, S.H. 2020. Autophagy induction can regulate skin pigmentation by causing
melanosome degradation in keratinocytes and melanocytes. Pigment Cell and Melanoma Research 33(3): 403-415.
Ko, F.N., Cheng, Z.J., Lin, C.N. & Teng, C.M.
1998. Scavenger and antioxidant properties of prenylflavones isolated From Artocarpus heterophyllus. Free Radical Biology and Medicine 25(2):
160-168.
Ko, G.A., Shrestha, S. & Cho, S.K. 2018. Sageretia thea fruit extracts rich in
methyl linoleate and methyl linolenate downregulate melanogenesis via the
Akt/GSK3β signaling pathway. Nutrition
Research and Practice 12(1): 3-12.
Ko, G.A., Kang, H.R., Moon, J.Y., Ediriweera, M.K.,
Eum, S., Bach, T.T. & Cho, S.K. 2019. Annona
squamosa L. leaves inhibit alpha-melanocyte-stimulating hormone
(α-MSH) stimulated melanogenesis via p38 signaling pathway in B16F10
melanoma cells. Journal of Cosmetic
Dermatology 19(7): 1785-1792.
Ko, H.H., Chiang, Y.C., Tsai, M.H., Liang, C.J., Hsu,
L.F., Li, S.Y., Wang, M.C., Yen, F.L. & Lee, C.W. 2014. Eupafolin, a skin
whitening flavonoid isolated from Phyla
nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. Journal of Ethnopharmacology 151(1):
386-393.
Kumari, S., Thng, S.T.G., Verma, N.K. & Gautam,
H.K. 2018. Melanogenesis inhibitors. Acta
Dermato-Venereologica 98(9-10): 924-931.
Kwon, S.H., Choi, H.R., Kang, Y.A. & Park, K.C.
2017. Depigmenting effect of resveratrol is dependent on FOXO3a activation
without SIRT1 activation. International
Journal of Molecular Sciences 18(6): 1213.
Lee, C.C., Lin, C.N. & Jow, G.M. 2006. Cytotoxic
and apoptotic effects of prenylflavonoid artonin B in human acute lymphoblastic
leukemia cells. Acta Pharmacologica
Sinica 27(9): 1165-1174.
Lee, J.O., Kim, E., Kim, J.H., Hong, Y.H., Kim, H.G.,
Jeong, D., Kim, J., Kim, S.H., Park, C., Seo, D.B., Son, Y.J., Han, S.Y. &
Cho, J.Y. 2018. Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract. Journal of Ginseng Research 42(3):
389-399.
Levy, C., Khaled, M. & Fisher, D.E. 2006. MITF:
Master regulator of melanocyte development and melanoma oncogene. Trends in Molecular Medicine 12(9):
406-414.
Li, J., Lin, Z., Tang, X., Liu, G., Chen, Y., Zhai,
X., Huang, Q. & Cao, Y. 2020. Oxyresveratrol extracted from Artocarpus heterophyllus Lam. inhibits
tyrosinase and age pigments in vitro and in vivo. Food and Function 11(7): 6595-6607.
Li, Z., Lan, Y., Miao, J., Chen, X., Chen, B., Liu,
G., Wu, X., Zhu, X. & Cao, Y. 2021. Phytochemicals, antioxidant capacity
and cytoprotective effects of jackfruit (Artocarpus
heterophyllus Lam.) axis extracts on HepG2 cells. Food Bioscience 41: 100933.
Lin, C.N., Shieh, W.L., Ko, F.N. & Teng, C.M.
1993. Antiplatelet activity of some prenylflavonoids. Biochemical Pharmacology 45(2): 509-512.
Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G.,
Wu, H.L., Yang, C. & Liu, H.F. 2016. p62 links the autophagy pathway and
the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters 21: 29.
Ma, J., Guo, W. & Li, C. 2017. Ubiquitination in
melanoma pathogenesis and treatment. Cancer
Medicine 6(6): 1362-1377.
Makbal, R., Villareal, M.O., Gadhi, C., Hafidi, A.
& Isoda, H. 2020. Argania spinosa fruit shell extract-induced melanogenesis via cAMP signaling pathway
activation. International Journal of
Molecular Sciences 21(7): 2539.
Matsui, M.S., Petris, M.J., Niki, Y.,
Karaman-Jurukovska, N., Muizzuddin, N., Ichihashi, M. & Yarosh, D.B. 2015.
Omeprazole, a gastric proton pump inhibitor, inhibits melanogenesis by blocking
ATP7A trafficking. Journal of
Investigative Dermatology 135(3): 834-841.
Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N.
2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proceedings of the National Academy of
Sciences 98(13): 7004-7011.
Morrison, I.J., Zhang, J., Lin, J., Murray, J.E.,
Porter, R., Langat, M.K., Sadgrove, N.J., Barker, J., Zhang, G. & Delgoda,
R. 2021. Potential chemopreventive, anticancer and anti-inflammatory properties
of a refined artocarpin-rich wood extract of Artocarpus heterophyllus Lam. Scientific
Reports 11(1): 6854.
Nguyen, N.T., Nguyen, M.H.K., Nguyen, H.X., Bui,
N.K.N. & Nguyen, M.T.T. 2012. Tyrosinase inhibitors from the wood of Artocarpus heterophyllus. Journal of Natural Products 75(11):
1951-1955.
Ochiai, Y., Kaburagi, S., Okano, Y., Masaki, H.,
Ichihashi, M., Funasaka, Y. & Sakurai, H. 2008. A Zn(II)–glycine complex
suppresses UVB-induced melanin production by stimulating metallothionein
expression. International Journal of
Cosmetic Science 30(2): 105-112.
Oskoueian, E., Karimi, E., Noura, R., Ebrahimi, M.,
Shafaei, N. & Karimi, E. 2020. Nanoliposomes encapsulation of enriched
phenolic fraction from pistachio hulls and its antioxidant, anti-inflammatory,
and anti-melanogenic activities. Journal
of Microencapsulation 37(1): 1-13.
Pang, J.R., How, S.W., Wong, K.H., Lim, S.H., Phang,
S.M. & Yow, Y.Y. 2022. Cholinesterase inhibitory activities of
neuroprotective fraction derived from red alga Gracilaria manilaensis. Fisheries
and Aquatic Sciences 25(2): 49-63.
Parvez, S., Kang, M., Chung, H.S., Cho, C., Hong,
M.C., Shin, M.K. & Bae, H. 2006. Survey and mechanism of skin depigmenting
and lightening agents. Phytotherapy
Research 20(11): 921-934.
Pearson, D. 1976. Chemical
Analysis of Food. Edinburg: Churchill Livingstone.
Plensdorf, S. & Martinez, J. 2009. Common
pigmentation disorders. American Family
Physician 79(2): 109-116.
Prakash, O., Kumar, R., Mishra, A. & Gupta, R.
2009. Artocarpus heterophyllus (Jackfruit):
An overview. Pharmacognosy Reviews 3(6): 353-358.
Price, E.R., Horstmann, M.A., Wells, A.G.,
Weilbaecher, K.N., Takemoto, C.M., Landis, M.W. & Fisher, D.E. 1998.
α-melanocyte-stimulating hormone signaling regulates expression of
microphthalmia, a gene deficient in Waardenburg syndrome. Journal of Biological Chemistry 273(49): 33042-33047.
Ramli, A.N.M., Badrulzaman, S.Z.S., Hamid, H.A. &
Bhuyar, P. 2021. Antibacterial and antioxidative activity of the essential oil
and seed extracts of Artocarpus
heterophyllus for effective shelf‐life enhancement of stored meat. Journal of Food Processing and Preservation 45(1): e14993.
Roh, E., Jeong, I.Y., Shin, H., Song, S., Kim, N.D.,
Jung, S.H., Hong, J.T., Lee, S.H., Han, S.B. & Kim, Y. 2014. Downregulation
of melanocyte-specific facultative melanogenesis by
4-hydroxy-3-methoxycinnamaldehyde acting as a cAMP antagonist. Journal of Investigative Dermatology 134(2): 551-553.
Ryu, Y.B., Ha, T.J., Curtis-Long, M.J., Ryu, H.W.,
Gal, S.W. & Park, K.H. 2008. Inhibitory effects on mushroom tyrosinase by
flavones from the stem barks of Morus
lhou (S.) Koidz. Journal of Enzyme
Inhibition and Medicinal Chemistry 23(6): 922-930.
Saad, H.M., Tan, C.H., Lim, S.H., Manickam, S. &
Sim, K.S. 2021. Evaluation of anti-melanogenesis and free radical scavenging
activities of five Artocarpus species
for cosmeceutical applications. Industrial
Crops and Products 161: 113184.
Sangkaew, O. & Yompakdee, C. 2020. Fermented
unpolished black rice (Oryza sativa L.) inhibits melanogenesis via ERK, p38, and AKT phosphorylation in B16F10
melanoma cells. Journal of Microbiology
and Biotechnology 30(8): 1184-1194.
Seo, E.Y., Jin, S.P., Sohn, K.C., Park, C.H., Lee,
D.H. & Chung, J.H. 2017. UCHL1 regulates melanogenesis
through controlling MITF stability in human melanocytes. Journal of Investigative Dermatology 137(8): 1757-1765.
Seo, G.Y., Ha, Y., Park, A.H., Kwon, O.W. & Kim,
Y.J. 2019. Leathesia difformis extract inhibits α-MSH-induced melanogenesis in B16F10 cells via
down-regulation of CREB signaling pathway. International
Journal of Molecular Sciences 20(3): 536.
Solano, F., Briganti, S., Picardo, M. & Ghanem, G.
2006. Hypopigmenting agents: An updated review on biological, chemical and
clinical aspects. Pigment Cell Research 19(6): 550-571.
Sun, L., Guo, C., Yan, L., Li, H., Sun, J., Huo, X.,
Xie, X. & Hu, J. 2020. Syntenin regulates melanogenesis via the p38 MAPK
pathway. Molecular Medicine Reports 22(2): 733-738.
Taira, N., Katsuyama, Y., Yoshioka, M., Okano, Y.
& Masaki, H. 2018. 3-O-Glyceryl-2-O-hexyl ascorbate suppresses
melanogenesis by interfering with intracellular melanosome transport and
suppressing tyrosinase protein synthesis. Journal
of Cosmetic Dermatology 17(6): 1209-1215.
Takizawa, T., Imai, T., Onose, J.I., Ueda, M., Tamura,
T., Mitsumori, K., Izumi, K. & Hirose, M. 2004. Enhancement of hepatocarcinogenesis
by kojic acid in rat two-stage models after initiation with
N-bis(2-hydroxypropyl)nitrosamine or N-diethylnitrosamine. Toxicological Sciences 81(1): 43-49.
Tan, C.H., Sim, D.S.Y., Lim, S.H., Mohd Mohidin, T.B.,
Mohan, G., Low, Y.Y., Kam, T.S. & Sim, K.S. 2022. Antiproliferative and
microtubule-stabilizing activities of two iboga-vobasine bisindoles alkaloids
from Tabernaemontana corymbosa in
colorectal adenocarcinoma HT-29 cells. Planta
Medica 88(14): 1325-1340.
The UniProt, C. 2019. UniProt: A worldwide hub of
protein knowledge. Nucleic Acids Research 47(D1): D506-D515.
Tsatmali, M., Ancans, J. & Thody, A.J. 2002.
Melanocyte function and its control by melanocortin peptides. Journal of Histochemistry and Cytochemistry 50(2): 125-133.
Vázquez-González, Y., Ragazzo-Sánchez, J.A. &
Calderón-Santoyo, M. 2020. Characterization and antifungal activity of
jackfruit (Artocarpus heterophyllus Lam.) leaf extract obtained using conventional and emerging technologies. Food Chemistry 330: 127211.
Villareal, M.O., Han, J., Ikuta, K. & Isoda, H.
2012. Mechanism of Mitf inhibition
and morphological differentiation effects of hirsein A on B16 melanoma cells
revealed by DNA microarray. Journal of
Dermatological Science 67(1): 26-36.
Wei, B.L., Weng, J.R., Chiu, P.H., Hung, C.F., Wang,
J.P. & Lin, C.N. 2005. Antiinflammatory flavonoids from Artocarpus heterophyllus and Artocarpus communis. Journal of Agricultural and Food Chemistry 53(10): 3867-3871.
Wu, M., Hemesath, T.J., Takemoto, C.M., Horstmann,
M.A., Wells, A.G., Price, E.R., Fisher, D.Z. & Fisher, D.E. 2000. C-Kit
triggers dual phosphorylations, which couple activation and degradation of the
essential melanocyte factor Mi. Genes and
Development 14(3): 301-312.
Zheng, Y., Lee, E.H., Lee, S.Y., Lee, Y., Shin, K.O., Park,
K. & Kang, I.J. 2023. Morus alba L. root decreases melanin synthesis via sphingosine-1-phosphate signaling in
B16F10 cells. Journal of
Ethnopharmacology 301: 115848.
*Pengarang untuk
surat-menyurat; email: simkaeshin@um.edu.my
|