Sains Malaysiana 52(2)(2023): 589-597
http://doi.org/10.17576/jsm-2023-5202-20
Electrocardiogram
Analysis of Hyperlipidemia-Induced Wistar Rats using
Wireless Mice Electrocardiogram
(Analisis Elektrokardiogram Tikus Wistar Aruhan
Hiperlipidemia menggunakan Elektrokardiogram Tikus Tanpa Wayar)
HARFI MAULANA1, AHMAD RIDWAN1,2
*, SUPRIJANTO3, SHANTY RAHAYU KUSUMAWARDANI2 &
LULU LUSIANTI FITRI1,2
1Biotechnology Department, School of Life
Sciences and Technology, Institute of
Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
2Biology Department, School of Life Sciences
and Technology, Institute of
Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
3Engineering Physics Department, Faculty of
Industrial Technology, Institute of
Technology Bandung, Jalan Ganesha 10, Bandung 40312 Indonesia
Diserahkan:
14 Mac 2022/Diterima: 27 Disember 2022
Abstract
Coronary heart disease (CHD)
is a life-threatening disease caused by obstruction of the coronary arteries
that interferes with blood flow known as atherosclerosis. Hyperlipidemia, a
risk factor of atherosclerosis, is characterized by excessive concentrations of
total cholesterol, LDL, and triglycerides with low concentrations of HDL. A
high-fat diet (HFD) contributes
to the progression of atherosclerosis, CHD, and other cardiovascular
diseases. This study aims to
measure electrocardiography (ECG) waves of hyperlipidemia-induced rats. Twenty rats were fed different diets for eight weeks,
i.e., the control group (normal diet) and the HFD group (high-fat
diet). Their ECG was recorded using a Wireless Mice Electrocardiogram (WIM ECG)
for 5-10 min. After eight weeks, the HFD group showed a significantly higher
lipid profile concentration (cholesterol: 179.03 mg/dL,
triglyceride: 149.11 mg/dL, LDL: 123 mg/dL, HDL: 29.15 mg/dL) than the
control. This hyperlipidemic condition causes a
significant change in some characteristics of the ECG wave. At week 8, the
characteristic ECG wave duration for the HFD groups was RR intervals (176.5 ms), QT intervals (123.5 ms), T
waves (33.6 ms), P wave (27.4 ms), QRS interval (64.9 ms), ST-segment (23.7 ms), and
heart rate (334 bpm). This study concludes that long-period HFD feeding in rats
leads to hyperlipidemia and causes changes in the characteristics of ECG waves.
Keywords: Atherosclerosis;
electrocardiogram; high-fat diet; hyperlipidemia; WIM ECG
Abstrak
Penyakit jantung koronari (CHD)
ialah penyakit yang mengancam nyawa yang disebabkan oleh penyumbatan arteri
koronari yang mengganggu aliran darah yang dikenali sebagai aterosklerosis. Hiperlipidemia,
faktor risiko aterosklerosis, dicirikan oleh kepekatan berlebihan jumlah
kolesterol, LDL dan trigliserida dengan kepekatan HDL yang rendah. Diet tinggi
lemak (HFD) menyumbang kepada penjanjangan aterosklerosis, CHD dan penyakit
kardiovaskular yang lain. Kajian ini bertujuan untuk mengukur gelombang
elektrokardiografi (ECG) tikus yang disebabkan oleh hiperlipidemia. Dua puluh ekor
tikus diberi makan diet yang berbeza selama lapan minggu, iaitu kumpulan
kawalan (diet biasa) dan kumpulan HFD (diet tinggi lemak). ECG mereka
direkodkan menggunakan Wireless Mice
Electrocardiogram (WIM ECG) selama 5-10 minit. Selepas lapan
minggu, kumpulan HFD menunjukkan kepekatan profil lipid yang jauh lebih tinggi
(kolesterol: 179.03 mg/dL, trigliserida: 149.11 mg/dL, LDL: 123 mg/dL, HDL:
29.15 mg/dL) daripada kawalan. Keadaan hiperlipidemik ini menyebabkan perubahan ketara
dalam beberapa ciri gelombang ECG. Pada minggu ke-8, tempoh ciri gelombang ECG untuk
kumpulan HFD ialah selang RR (176.5 ms), selang QT (123.5 ms), gelombang T
(33.6 ms), gelombang P (27.4 ms), selang QRS (64.9 ms), segmen ST (23.7 ms) dan
kadar denyutan jantung (334 bpm). Kajian ini menyimpulkan bahawa pemberian HFD jangka
panjang pada tikus membawa kepada hiperlipidemia dan menyebabkan perubahan
dalam ciri gelombang ECG.
Kata kunci: Aterosklerosis; diet
tinggi lemak; ECG WIM; elektrokardiogram; hiperlipidemia
RUJUKAN
Abdurrachim, D., Ciapaite, J., Wessels, B., Nabben,
M., Luiken, J.J.F.P., Nicolay, K. & Prompers, J.J. 2014. Cardiac diastolic
dysfunction in high-fat diet fed mice is associated with lipotoxicity without
impairment of cardiac energetics in vivo. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1841(10): 1525-1537.
Adermark, L., Gutierrez, S., Lagström, O., Hammarlund,
M., Licheri, V. & Johansson, M.E. 2021. Weight gain and neuroadaptations
elicited by high fat diet depend on fatty acid composition. Psychoneuroendocrinology 126: 105143.
Astuti, R. 2019. Black rice potential in HDL and LDL
profile in Sprague Dawley rat with high cholesterol diet. IOP Conference Series: Earth and Environmental Science. 292:
012019.
Avelar, E., Cloward, T., Walker, J., Farney, R.,
Strong, M., Pendleton, R., Segerson, N., Adams, T.D., Gress, R.E., Hunt, S.C.
& Litwin, S.E. 2007. Left ventricular hypertrophy in severe obesity:
Interactions among blood pressure, nocturnal hypoxemia, and body mass. Hypertension
(Dallas, Tex. : 1979) 49(1): 34-39.
Botelho, A.F., Juviano-Santos, J.V., Santos-Miranda,
A., Menezes-Filho, J.E.R., Soto-Blanco, B., Cruz, J., Guatimosim, C. &
Marilia, M. 2019. Non-invasive ECG recording and QT interval correction
assessment in anesthetized rats and mice. Brazilian Journal of Veterinary
Research 39(6): 409-415.
Cena, H. & Calder, P.C. 2020. Defining a healthy
diet: Evidence for the role of contemporary dietary patterns in health and
disease. Nutrients 12(2): 334.
Guzzardi, M.A. & Iozzo, P. 2011. Fatty heart,
cardiac damage, and inflammation. The Review of Diabetic Studies: RDS 8(3): 403-417.
Hammad, M., Maher, A., Wang, K., Jiang, F. &
Amrani, M. 2018. Detection of abnormal heart conditions based on
characteristics of ECG signals. Measurement 125: 634-644.
Han, Q., Yeung, S.C., Ip, M.S.M. & Mak, J.C.W.
2018. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol
diet-induced rat model. Lipids in Health and Disease 17(1): 255.
Hua, Y., Zhang, Y., Dolence, J., Shi, G., Ren, J. &
Nair, S. 2013. Cathepsin K knockout mitigates high-fat diet-induced cardiac
hypertrophy and contractile dysfunction. Diabetes 62(2): 498-509.
Knopfholz, J., Disserol, C.C.D., Pierin, A.J., Schirr,
F.L., Streisky, L., Takito, L.L., Massucheto Ledesma, P., Faria-Neto, J.R.,
Olandoski, M., da Cunha, C.L.P. & Bandeira, A.M. 2014. Validation of the
friedewald formula in patients with metabolic syndrome. Cholesterol 2014: 261878.
Koca, T.T., Tugan, C.B., Seyithanoglu, M. &
Kocyigit, B.F. 2021. The clinical importance of the plasma atherogenic index,
other lipid indexes, and urinary sodium and potassium excretion in patients
with stroke. Eurasian Journal of Medicine 51(2): 171-175.
Koene, R., Prizment, A., Blaes, A. & Konety, S.
2016. Shared risk factors in cardiovascular disease and cancer. Circulation 133(11): 1104-1114.
Kumar, M., Pachori, R.B. & Acharya, U.R. 2017.
Automated diagnosis of myocardial infarction ECG signals using sample entropy
in flexible analytic wavelet transform framework. Entropy 19(9): 488.
Liu, E. & Fan, J. 2017. Fundamentals of
Laboratory Animal Science. Boca Raton: CRC Press. pp. 304-322.
Martini, F., Nath, J.L. & Bartholomew, E.F. 2015. Fundamentals
of Anatomy & Physiology. Pearson Education. pp. 685-717.
Maulana, H. & Ridwan, A. 2021. High-fat
diets-induced metabolic disorders to study molecular mechanism of
hyperlipidemia in rats. 3BIO: Journal of Biological Science, Technology and
Management 3(2): 38-50.
Moreno-Fernández, S., Garcés-Rimón, M., Vera, G., Astier,
J., Landrier, J.F. & Miguel, M. 2018. High fat/high glucose diet induces
metabolic syndrome in an experimental rat model. Nutrients 10(10): 1502.
Nelson, R.H. 2013. Hyperlipidemia as a risk factor for
cardiovascular disease. Prim Care 40(1): 195-211.
Niroumand, S., Khajedaluee, M., Khadem-Rezaiyan, M.,
Abrishami, M., Juya, M., Khodaee, G. & Dadgarmoghaddam, M. 2015.
Atherogenic index of plasma (AIP): A marker of cardiovascular disease. Medical
Journal of the Islamic Republic of Iran 29(1): 240.
Nugroho, A.A., Chusnia, C. & Suprijanto, S. 2017.
Pengembangan sistem instrumentasi untuk deteksi aktifitas jantung pada mencit. Jurnal
Otomasi Kontrol dan Instrumentasi 9(2): 109-117.
Padsalgikar, A.D. 2017. Cardiovascular system:
Structure, assessment, and diseases. Plastics in Medical Devices for
Cardiovascular Applications. pp. 103-132.
https://doi.org/10.1016/B978-0-323-35885-9.00005-9
Park, D.S. & Fishman, G.I. 2017. Development and
function of the cardiac conduction system in health and disease. Journal of
Cardiovascular Development and Disease 4(2): 7.
P2PTM
Kemenkes RI. 2019. Hari Jantung Sedunia (World Heart Day): Your Heart Is Our Heart Too. https://p2ptm.kemkes.go.id/kegiatan-p2ptm/pusat-/hari-jantung-sedunia-world-heart-day-your-heart-is-our-heart-too
Schulpis, K. & Karikas, G.A. 1998. Serum
cholesterol and triglyceride distribution in 7767 school-aged greek children. Pediatrics 101(5): 861-864.
Setyaji, D.Y., Prabandari, Y.S. & Gunawan, I.M.A.
2018. Aktivitas fisik dengan penyakit jantung koroner di indonesia. Jurnal
Gizi Klinik Indonesia 14(3): 115-121.
Susilowati, R., Jannah, J., Maghfuroh, Z. & Kusuma,
M.T. 2020. Antihyperlipidemic effects of apple peel extract in high-fat
diet-induced hyperlipidemic rats. Journal of Advanced Pharmaceutical
Technology & Research 11(3): 128.
Wali, J.A., Jarzebska, N., Raubenheimer, D., Simpson,
S.J., Rodionov, R.N. & O’sullivan, J.F. 2020. Cardio-metabolic effects of
high-fat diets and their underlying mechanisms - A narrative review. Nutrients 12(5): 1505.
Wang, L., Xu, F., Zhang, X.J., Jin, R.M. & Li, X.
2015. Effect of high-fat diet on cholesterol metabolism in rats and its
association with Na+/K+-ATPase/Src/PERK signaling pathway. Journal of
Huazhong University of Science and Technology - Medical Science 35(4):
490-494.
Wiktorowska-Owczarek, A., Berezińska, M. &
Nowak, J. 2015. PUFAs: Structures, metabolism and functions. Advances in
Clinical and Experimental Medicine: Official Organ Wroclaw Medical University 24(6): 931-941.
Yang, Z., Hao, D., Che, Y., Zhang, L. & Zhang, S.
2018. Structural basis and functional mechanism of lipoprotein in cholesterol
transport. In Cholesterol - Good, Bad and the Heart, edited by Nagpal,
M.L. InTech.
Yuan, Y., Liu, Q., Zhao, F., Cao, J., Shen, X. &
Li, C. 2019. Holothuria leucospilota polysaccharides ameliorate hyperlipidemia in high-fat diet-induced rats via
short-chain fatty acids production and lipid metabolism regulation. International
Journal of Molecular Sciences 20(19): 4738.
Zhang, X., Kong, S., Wu, M., Niu, Y., Wang, K., Zhu, H.
& Yuan, J. 2021. Impact high fat diet on myocardial strain in mice by 2D
speckle tracking imaging. Obesity Research and Clinical Practice 15(2):
133-137.
Zhang, Y., Shanshan, G., Yang, Z., Li, Z., Gong, X.,
Zhang, Q., Dong, W. & Dong, C. 2020. Disturbance of Di-(2-Ethylhexyl) phthalate
in hepatic lipid metabolism in rats fed with high fat diet. Food and
Chemical Toxicology 146: 111848.
*Pengarang untuk surat-menyurat; email: ridwan@sith.itb.ac.id
|