Sains Malaysiana 52(2)(2023): 579-588
http://doi.org/10.17576/jsm-2023-5202-19
Hypoglycemic Effect of Flavonoid Glabridin
Prevents Homeostatic Disruption of Native Achilles Tendon in
Streptozotocin-Induced Type 1 Diabetic Rats
(Kesan Hipoglisemik Flavonoid
Glabridin Mencegah Gangguan Homeostatik Tendon Achilles Asal pada Tikus
Diabetik Jenis 1 Aruhan Streptozotosin)
JONGDEE
NOPPARAT1,2, WIPAPAN KHIMMAKTONG 1, CHUMPOL PHOLPRAMOOL 3 & CHITTIPONG TIPBUNJONG1,*
1Department of Anatomy, Division of Health and Applied
Sciences, Faculty of Science, Prince of Songkhla University, Songkhla 90110,
Thailand
2Trace Analysis
and Biosensor Research Center, Prince of Songkhla University, Songkhla 90110,
Thailand
3Department of
Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Diserahkan: 9 Jun 2022/Diterima: 16 November 2022
Abstract
Diabetic mellitus
is a complex and serious disorder characterized by poor glycemic control
leading to tendon architectural alterations and inflammation. This study aimed
to investigate the protective effects of glabridin, a polyphenolic flavonoid,
on architecture and inflammation of the Achilles tendon in
streptozotocin-induced type 1 diabetic rats. Type 1 diabetes was induced by a
single intraperitoneal injection of streptozotocin (60 mg/kg b.wt.). After
confirmation of the diabetic state, the rats were divided into four groups;
normal control, diabetic control, diabetic + glabridin (40 mg/kg b.wt.), and
diabetic + glyburide (5 mg/kg b.wt.) as a positive control group. After 8 weeks
of treatment, the Achilles tendons were collected and subjected to
histopathological examinations with hematoxylin and eosin, Masson’s trichrome,
periodic acid Schiff, and toluidine blue staining. Immunohistochemical staining
(IHC) was also performed to study the inflammation of the tendon tissues.
Histopathological examinations showed the protective effects of glabridin
against hyperglycemia-induced collagen disorganization and deposition of
glycoproteins in the extracellular matrix of the tendon. Treatment with
glabridin significantly decreased the interfibrillar length, interfibrillar
space, and number of infiltrated mast cells in the tendon tissue of diabetic
rats. In addition, IHC staining showed that administration of glabridin
drastically attenuated advance glycation end products (AGEs) formation and
accumulation, and decreased the IL-1β and TNF-α positive stains
compared to the non-treated diabetic control group. Taken together, this study
showed glabridin prevents architectural alterations and suppresses inflammation
in the Achilles tendon of diabetic rats.
Keywords: Achilles
tendon; collagen fibre; hyperglycemia; inflammation; phytoestrogen
Abstrak
Diabetes mellitus merupakan gangguan yang kompleks dan
serius dan dicirikan oleh kawalan glisemik yang lemah yang membawa kepada
perubahan dan keradangan struktur tendon. Kajian ini bertujuan
untuk mengkaji kesan perlindungan glabridin, flavonoid polifenol pada tendon
Achilles pada tikus diabetes jenis 1 aruhan streptozotosin. Diabetes jenis 1 diaruh oleh satu suntikan intraperitoneum streptozotosin
(60 mg/kg b.wt.). Selepas pengesahan
keadaan diabetes, tikus dibahagikan kepada empat kumpulan; kawalan normal, kawalan diabetes, diabetes + glabridin (40 mg/kg b.wt.) dan
diabetes + glyburide (5 mg/kg b.wt.) sebagai kumpulan kawalan positif. Selepas 8 minggu rawatan, tendon Achilles dikumpul dan tertakluk kepada
pemeriksaan histopatologi dengan hematoksilin dan eosin, trichrome Masson, asid
berkala Schiff dan pewarnaan toluidina biru. Pewarnaan
imunohistokimia (IHC) juga dilakukan untuk mengkaji keradangan tisu tendon. Pemeriksaan histopatologi menunjukkan kesan perlindungan glabridin terhadap
gangguan kolagen aruhan hiperglisemia dan pemendapan glikoprotein dalam matriks
ekstrasel tendon. Rawatan dengan
glabridin mengurangkan panjang antarafibril, ruang antarafibril dan
bilangan sel mast yang menyusup ke dalam tisu tendon tikus diabetes. Di samping itu, pewarnaan IHC menunjukkan bahawa penyuntikan glabridin
secara drastik melemahkan pembentukan dan pengumpulan produk akhir glikasi awal
(AGEs) dan mengurangkan kesan positif IL-1β dan TNF-α berbanding
kumpulan kawalan diabetes yang tidak dirawat. Secara keseluruhan,
kajian ini menunjukkan glabridin menghalang perubahan struktur dan menyekat
keradangan pada tendon Achilles tikus diabetes.
Kata kunci: Fitoestrogen; hiperglisemia; keradangan;
serat kolagen; tendon Achilles
RUJUKAN
Chin,
Y.W., Jung, H.A., Liu, Y., Su, B.N., Castoro, J.A., Keller, W.J., Pereira, M.A.
& Kinghorn, A.D. 2007. Anti-oxidant constituents of the roots and stolons
of licorice (Glycyrrhiza glabra). Journal of Agricultural and Food
Chemistry 55: 4691-4697.
El-Ghffar,
E.A. Abd. 2016. Ameliorative effect of glabridin, a main component of Glycyrrhiza
glabra L. roots in streptozotocin induced Type 1 diabetes in male albino
rats. Indian Journal of Traditional Knowledge 15: 570-579.
Fong,
D.S., Aiello, L., Gardner, T.W., King, G.L., Blankenship, G., Cavallerano,
J.D., Ferris 3rd, F.L., Klein, R. & American Diabetes
Association. 2004. Retinopathy in diabetes. Diabetes Care 27: 84-87.
Gross,
J.L., De Azevedo, M.J., Silveiro, S.P., Canani, L.H., Caramori, M.L. &
Zelmanovitz, T. 2005. Diabetic nephropathy: Diagnosis, prevention, and
treatment. Diabetes Care 28: 164-176.
Guerquin,
M.J., Charvet, B., Nourissat, G., Havis, E., Ronsin, O., Bonnin, M.A., Ruggiu,
M., Olivera-Martinez, I., Robert, N., Lu, Y., Kadler, K.E., Baumberger, T.,
Doursounian, L., Berenbaum, F. & Duprez, D. 2013. Transcription factor EGR1
directs tendon differentiation and promotes tendon repair. Journal of
Clinical Investigation 123: 3564-3576.
Hunt,
J.V., Dean, R.T. & Wolff, S.P. 1988. Hydroxyl radical production and
autoxidative glycosylation. Glucose autoxidation as the cause of protein damage
in the experimental glycation model of diabetes mellitus and ageing. Biochemical
Journal 256: 205-212.
Kim,
H.S., Suh, K.S., Ko, A., Sul, D., Choi, D., Lee, S.K. & Jung, W.W. 2013.
The flavonoid glabridin attenuates 2-deoxy-D-ribose-induced oxidative damage
and cellular dysfunction in MC3T3-E1 osteoblastic cells. International
Journal of Molecular Medicine 31: 243-251.
Komolkriengkrai,
M., Nopparat, J., Vongvatcharanon, U., Anupunpisit, V. & Khimmaktong, W.
2019. Effect of glabridin on collagen deposition in liver and amelioration of
hepatocyte destruction in diabetes rats. Experimental and Therapeutic
Medicine 18: 1164-1174.
Kruse,
I. & Edelman, S. 2006. Evaluation and treatment of diabetic foot ulcers. Clinical
Diabetes 24: 91-93.
Kwon,
H.S., Oh, S.M. & Kim, J.K. 2008. Glabridin, a functional compound of
liquorice, attenuates colonic inflammation in mice with dextran sulphate
sodium-induced colitis. Clinical and Experimental Immunology 151:
165-173.
Lee,
J.M. & Veres, S.P. 2019. Advanced glycation end-product cross-linking
inhibits biomechanical plasticity and characteristic failure morphology of
native tendon. Journal of Applied Physiology 126: 832-841.
Lee,
J.W., Choe, S.S., Jang, H., Kim, J., Jeong, H.W., Jo, H., Jeong, K.H., Tadi,
S., Park, M.G., Kwak, T.H., Kim, J.M., Hyun, D.H. & Kim, J.B. 2012. AMPK
activation with glabridin ameliorates adiposity and lipid dysregulation in
obesity. Journal of Lipid Research 53: 1277-1286.
Leung,
M., Folkes, G., Ramamurthy, N. & Schneir, M. 1986. Diabetes stimulated
procollagen degradation in rat tendon in
vitro. Biochimica et Biophysica Acta 880: 147-152.
Liu,
K., Pi, F., Zhang, H., Ji, J., Xia, S., Cui, F., Sun, J. & Sun, X. 2017.
Metabolomics analysis to evaluate the anti-inflammatory effects of polyphenols:
Glabridin reversed metabolism change caused by LPS in RAW 264.7 cells. Journal
of Agricultural and Food Chemistry 65: 6070-6079.
Li,
Y., Fessel, G., Georgiadis, M. & Snedeker, J.G. 2013. Advanced glycation
end-products diminish tendon collagen fiber sliding. Matrix Biology 32:
169-177.
Madhusudhanan,
J., Suresh, G. & Devanathan, V. 2020. Neurodegeneration in type 2 diabetes:
Alzheimer's as a case study. Brain and Behavior 10: e01577.
Maher,
P. & Hanneken, A. 2005. Flavonoids protect retinal ganglion cells from
oxidative stress-induced death. Investigative Ophthalmology & Visual
Science 46: 4796-4803.
Maksoud,
H.A., Magid, A.D.A., Mostafa, Y., Elharrif, M.G., Sorour, R.I. & Sorour,
M.I. 2019. Ameliorative effect of liquorice extract versus silymarin in
experimentally induced chronic hepatitis: A biochemical and genetical study. Clinical
Nutrition Experimental 23: 69-79.
Ma,
H., Ren, H., Wang, J., Yuan, X., Wu, X. & Shi, X. 2021. Targeting
PI3K/Akt/Nrf2 pathway by glabridin alleviates acetaminophen-induced hepatic
injury in rats. Arabian Journal of Chemistry 14: 102968.
McCreesh,
K. & Lewis, J. 2013. Continuum model of tendon pathology - where are we now?. International Journal of Experimental Pathology 94: 242-247.
Mohamed,
J., Nafizah, A.N., Zariyantey, A. & Budin, S. 2016. Mechanisms of
diabetes-induced liver damage: The role of oxidative stress and inflammation. Sultan
Qaboos University Medical Journal 16: e132.
Nopparat,
J., Nualla-ong, A. & Phongdara, A. 2019. Ethanolic extracts of Pluchea
indica (L.) leaf pretreatment attenuates cytokine-induced β-cell
apoptosis in multiple low-dose streptozotocin-induced diabetic mice. PLoS
ONE 14: e0212133.
Obafemi,
T., Akinmoladun, A., Olaleye, M., Agboade, S.O. & Onasanya, A.A. 2017. Antidiabetic potential of methanolic and
flavonoid-rich leaf extracts of Synsepalum
dulcificum in type 2 diabetic rats. Journal of Ayurveda and Integrative Medicine 8: 238-246.
Peluso,
I., Miglio, C., Morabito, G., Ioannone, F. & Serafini, M. 2015. Flavonoids
and immune function in human: A systematic review. Critical Reviews in Food
Science and Nutrition 55: 383-395.
Rao,
S.R., Saltzman, C.L., Wilken, J. & Yak, H.J. 2006. Increased passive ankle
stiffness and reduced dorsiflexion range of motion in individuals with diabetes
mellitus. Foot and Ankle International 27: 617-622.
Rice-Evans,
C.A., Miller, N.J. & Paganga, G. 1996. Structure-antioxidant activity relationships
of flavonoids and phenolic acids. Free Radical Biology and Medicine 20:
933-956.
Sawada,
K., Yamashita, Y., Zhang, T., Nakagawa, K. & Ashida, H. 2014. Glabridin
induces glucose uptake via the AMP-activated protein kinase pathway in muscle
cells. Molecular and Cellular Endocrinology 393: 99-108.
Shaik,
Y., Caraffa, A., Ronconi, G., Lessiani, G. & Conti, P. 2018. Impact of
polyphenols on mast cells with special emphasis on the effect of quercetin and
luteolin. Central European Journal of Immunology 43: 476-481.
Simmler,
C., Pauli, G.F. & Chen, S.N. 2013. Phytochemistry and biological properties
of glabridin. Fitoterapia 90: 160-184.
Singh,
V.P., Bali, A., Singh, N. & Jaggi, A.S. 2014. Advanced glycation end products
and diabetic complications. Korean Journal of Physiology and Pharmacology 18: 1-14.
Somjen,
D., Knoll, E., Vaya, J., Stern, N. & Tamir, S. 2004. Estrogen-like activity
of licorice root constituents: Glabridin and glabrene, in vascular tissues in vitro and in vivo. Journal of Steroid Biochemistry and Molecular Biology 91: 147-155.
Song,
C.H., Kim, N., Kim, D.H., Lee, H.N. & Surh, Y.J. 2019. 17-β estradiol
exerts anti-inflammatory effects through activation of Nrf2 in mouse embryonic
fibroblasts. PLoS ONE 14(8): e0221650.
Spanheimer,
R.G. 1992. Correlation between decreased collagen production in diabetic
animals and in cells exposed to diabetic serum: response to insulin. Matrix 12: 101-107.
Vaya,
J., Belinky, P.A. & Aviram, M. 1997. Antioxidant constituents from licorice
roots: Isolation, structure elucidation and antioxidative capacity toward LDL
oxidation. Free Radical Biology and Medicine 23: 302-313.
Wongdee,
K. & Charoenphandhu, N. 2011. Osteoporosis in diabetes mellitus: Possible
cellular and molecular mechanisms. World Journal of Diabetes 2: 41-48
Wu,
F., Jin, Z. & Jin, J. 2013. Hypoglycemic effects of glabridin, a
polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Molecular
Medicine Reports 7: 1278-1282.
Wu,
Y.F., Wang, H.K., Chang, H.W., Sun, J., Sun, J.S. & Chao, Y.H. 2017. High
glucose alters tendon homeostasis through downregulation of the AMPK/Egr1
pathway. Scientific Reports 7: 1-12.
*Pengarang untuk
surat-menyurat; email: chittipong.t@psu.ac.th
|