Sains Malaysiana 52(2)(2023): 625-639
http://doi.org/10.17576/jsm-2023-5202-23
First Principles
Study of Toxic Gas Molecules Adsorption on Group IVA (C, Si, Ge) 2-Dimensional
Materials
(Kajian Prinsip Pertama Penjerapan Molekul Gas Toksik pada Kumpulan IVA (C, Si, Ge) Bahan 2 Dimensi)
MOHD
AZIZUL ZAINAL1,2, CHAN KAR TIM1,2,*,
HISHAMUDDIN ZAINUDDIN 1,2, NURISYA MOHD SHAH1,2 &
RAYMOND OOI CHONG HENG3
1Institute for Mathematical Research
(INSPEM), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
2Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan,
Malaysia
3Department of Physics, University of
Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 3 Jun 2022/Diterima: 11 November 2022
Abstract
Two-dimensional
materials from group IVA namely graphene, silicene,
and germanene have gained research interest in
various fields of applications recently due to their extraordinary
properties. These substrates have been successfully synthesized and are found
to have interesting gas sensing capabilities. In this work,
first-principles study using density functional theory is carried out to
investigate the adsorption of toxic gases such as CO, Cl2, NO2,
and COCl2 on these monolayers. We analyze the best adsorption site
and orientation for these molecules on the monolayers by calculating the
adsorption energy. Charge transfer, the density of state (DOS) and band diagram
calculations are performed to explore the changes in their electronic and
structural properties due to the adsorbed gas molecules. As for the sensing
performance, crude estimations of the sensitivity and recovery time are
performed. The results show that silicene and germanene monolayers are better at detecting CO and NO2 as compared to graphene. They have a short recovery time for CO but a long
recovery time for NO2 implying that they are better for scavenging
NO2. Besides, silicene is also a better
gas sensor for chlorine gas with a 44 min recovery time. As for graphene, it is
the best gas sensor for phosgene among the substrates. This study gives a clear
prediction of substrates for the detection of these toxic gases.
Keywords: Density
functional theory; germanene; graphene; silicene; toxic gases
Abstrak
Bahan dua dimensi daripada kumpulan IVA iaitu grafin, silisen dan germanen telah menarik minat penyelidikan dalam pelbagai bidang aplikasi baru-baru ini kerana sifatnya yang luar biasa. Substrat ini telah berjaya disintesis dan didapati mempunyai keupayaan penderiaan gas
yang menarik. Dalam penyelidikan ini, kajian prinsip pertama menggunakan teori fungsi ketumpatan digunakan untuk mengkaji penjerapan gas toksik seperti CO, Cl2,
NO2 dan COCl2 pada ekalapis ini.
Kami menganalisis tapak penjerapan dan orientasi terbaik untuk molekul ini pada ekalapis dengan menghitung tenaga penjerapan. Pemindahan caj, ketumpatan keadaan (DOS) dan pengiraan rajah jalur dilakukan untuk meneroka perubahan dalam sifat elektronik dan struktur disebabkan oleh molekul gas terjerap. Bagi prestasi penderiaan, anggaran kasar sensitiviti dan masa pemulihan digunakan. Keputusan menunjukkan bahawa ekalapis silisen dan germanen lebih baik dalam mengesan CO dan NO2 berbanding grafin. Mereka mempunyai masa pemulihan yang singkat untuk CO tetapi masa pemulihan yang panjang untuk NO2 mengimplikasikan bahawa mereka lebih sesuai untuk menggarut NO2. Selain itu, silisen juga merupakan sensor gas yang lebih sesuai untuk gas klorin dengan masa pemulihan 44 minit. Bagi grafin, ia adalah penderia gas terbaik untuk fosgen. Kajian ini memberi ramalan yang jelas tentang substrat untuk pengesanan gas toksik ini.
Kata kunci: Gas toksik; germanen; grafin; silisen; teori fungsian ketumpatan
RUJUKAN
Chan, K.T.,
Neaton, J.B. & Cohen, M.L. 2008. First-principles study of metal adatom
adsorption on graphene. Physical Review B 77(23): 235430.
Dai,
J., Yuan, J. & Giannozzi, P. 2009. Gas adsorption on graphene doped with B,
N, Al, and S: A theoretical study. Applied
Physics Letters 95(23): 232105.
Dávila,
M.E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. 2014. Germanene: A
novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics 16(9): 095002.
Feng,
B., Ding, Z., Meng, S., Yao, Y., He, X., Cheng, P., Chen, L. & Wu, K. 2012. Evidence of silicene in
honeycomb structures of silicon on Ag(111). Nano
Letters 12(7): 3507-3511.
Feng,
J.W., Liu, Y.J., Wang, H.X., Zhao, J.X., Cai, Q.H. & Wang, X.Z. 2014. Gas
adsorption on silicene: A theoretical study. Computational Materials Science 87: 218-226.
Fleurence,
A., Friedlein, R., Ozaki, T., Kawai, H., Wang, Y. & Yamada-Takamura, Y.
2012. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters 108(24): 245501.
Giannozzi,
P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D.,
Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S.,
Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj,
A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R.,
Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S.,
Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. & Wentzcovitch,
R.M. 2009. QUANTUM ESPRESSO: A modular and open-source software project for
quantum simulations of materials. Journal
of Physics: Condensed Matter 21(39): 395502.
Grimme,
S. 2006. Semiempirical GGA-type density functional constructed with a
long-range dispersion correction. Journal
of Computational Chemistry 27(15): 1787-1799.
Hamid,
M.A.B., Chan, K.T., Raymond Ooi, C.H., Zainuddin, H., Mohd Shah, N. &
Shahrol Nidzam, N.N. 2021. Structural stability and electronic properties of
graphene/germanene heterobilayer. Results
in Physics 28: 104545.
Lalmi,
B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B. & Aufray,
B. 2010. Epitaxial growth of a silicene sheet. Applied Physics Letters 97(22): 223109.
Leenaerts,
O., Partoens, B. & Peeters, F.M. 2008. Adsorption of H2O,NH3,
CO,NO2, and NO on graphene: A first-principles study. Physical Review B 77(12): 125416.
Li,
L., Lu, S.Z., Pan, J., Qin, Z., Wang, Y.Q., Wang, Y., Cao, G.Y., Du, S. &
Gao, H.J. 2014. Buckled germanene formation on Pt(111). Advanced Materials 26(28): 4820-4824.
Li,
S.S. 2012. Semiconductor Physical
Electronics. 2nd ed. Springer Science & Business Media.
Li,
W., Sheng, S., Chen, J., Cheng, P., Chen, L. & Wu, K. 2016. Ordered
chlorinated monolayer silicene structures. Physical
Review B 93(15): 155410.
Liu,
X.Y., Zhang, J.M. & Xu, K.W. 2014. Chlorine molecule adsorbed on graphene
and doped graphene: A first-principle study. Physica B: Condensed Matter 436: 54-58.
Lowdin,
P.O. 1970. Advances in Quantum Chemistry. Vol. 5. Elsevier.
Ma,
L., Zhang, J.M., Xu, K.W. & Ji, V. 2015. A first-principles study on gas
sensing properties of graphene and Pd-doped graphene. Applied Surface Science 343: 121-127.
Meng,
L., Wang, Y., Zhang, L., Du, S., Wu, R., Li, L., Zhang, Y., Li, G., Zhou, H.,
Hofer, W.A. & Gao, H.J. 2013. Buckled silicene formation on Ir(111). Nano Letters 13(2): 685-690.
Novoselov,
K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V.,
Dubonos, S.V. & Firsov, A.A. 2005. Two-dimensional gas of massless Dirac
fermions in graphene. Nature 438(7065):
197-200.
Novoselov,
K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V.,
Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically
thin carbon films. Science 306(5696):
666-669.
Patel,
K., Roondhe, B., Dabhi, S.D. & Jha, P.K. 2018. A new flatland buddy as
toxic gas scavenger: A first principles study. Journal of Hazardous Materials 351: 337-345.
Pham,
K.D., Ly, T.H., Vu, T.V., Hai, L.L., Nguyen, H.T.T., Le, P.T.T. & Khyzhun,
O.Y. 2020. Gas adsorption properties (N2, H2, O2,
NO, NO2, CO, CO2, and SO2) on a Sc2CO2 monolayer: A first-principles study. New
Journal of Chemistry 44(43): 18763-18769.
Raya,
S.S., Ansari, A.S. & Shong, B. 2021. Adsorption of gas molecules on
graphene, silicene, and germanene: A comparative first-principles study. Surfaces and Interfaces 24: 101054.
Schedin,
F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I. &
Novoselov, K.S. 2007. Detection of individual gas molecules adsorbed on
graphene. Nature Materials 6(9):
652-655.
Sholl,
D.S. & Steckel, J.A. 2009. Density
Functional Theory: A Practical Introduction. John Wiley & Sons.
Thi
Thu Hanh, T., Minh Phi, N. & Van Hoa, N. 2020. Hydrogen adsorption on
two-dimensional germanene and its structural defects: An ab initio investigation. Physical Chemistry
Chemical Physics 22(14): 7210-7217.
Tian,
W., Liu, X. & Yu, W. 2018. Research progress of gas sensor based on
graphene and its derivatives: A review. Applied
Sciences 8(7): 1118.
Wang,
W., Zhang, Y., Shen, C. & Chai, Y. 2016. Adsorption of CO molecules on
doped graphene: A first-principles study. AIP
Advances 6(2): 025317.
Xia,
W., Hu, W., Li, Z. & Yang, J. 2014. A first-principles study of gas
adsorption on germanene. Physical
Chemistry Chemical Physics 16(41): 22495-22498.
Yang,
S., Jiang, C. & Wei, S.H. 2017. Gas sensing in 2D materials. Applied Physics Reviews 4(2): 021304.
Yang,
S., Lei, G., Xu, H., Xu, B., Li, H., Lan, Z., Wang, Z. & Gu, H. 2019. A DFT
study of CO adsorption on the pristine, defective, In-doped and Sb-doped
graphene and the effect of applied electric field. Applied Surface Science 480: 205-211.
Yu,
S., Li, X.D., Wu, S.Q., Wen, Y.H., Zhou, S. & Zhu, Z.Z. 2014. Novel
electronic structures of superlattice composed of graphene and silicene. Materials Research Bulletin 50: 268-272.
Zhang,
X., Wang, J., Chen, D. & Liu, L. 2021. The adsorption performance of
harmful gas on Cu doped WS2: A first-principle study. Materials Today Communications 28:
102488.
Zhang,
X., Yu, L., Wu, X. & Hu, W. 2015. Experimental sensing and density
functional theory study of H2S and SOF2 adsorption on
Au-Modified Graphene. Advanced Science 2(11):
1500101.
*Pengarang untuk surat-menyurat; email:
chankt@upm.edu.my
|