Sains Malaysiana 52(3)(2023): 899-939

http://doi.org/10.17576/jsm-2023-5203-17

 

Exploration of Annona muricata (Annonaceae) in the Treatment of Hyperlipidemia Through Network Pharmacology and Molecular Docking

(Penerokaan Annona muricata (Annonaceae) dalam Rawatan Hiperlipidemia Melalui Rangkaian Farmakologi dan Dok Molekul)

 

RENY SYAHRUNI1, ABDUL HALIM UMAR1,*, HINDRIYANI NURUL RAHMAN1 & WISNU ANANTA KUSUMA2

 

1Division of Pharmaceutical Biology, College of Pharmaceutical Sciences Makassar (Sekolah Tinggi Ilmu Farmasi Makassar), Jalan Perintis Kemerdekaan Km. 13.7 Daya, Makassar 90242, Indonesia

2Department of Computer Science, Faculty of Mathematics and Natural Sciences, Jalan Meranti-Dramaga Campus, IPB University, Bogor 16680, Indonesia

 

Diserahkan: 11 Ogos 2022/Diterima: 5 Januari 2023

 

Abstract

Soursop (Annona muricata L.) is one of the plants that have antihyperlipidemic effects, but its underlying mechanism of action remains unknown. Previous investigations used TCMSP, KNApSAcK, ETCM, SwissTargetPrediction, SuperPred, CTD, and TTD to identify potential targets of soursop as antihyperlipidemic. Therefore, this study aims to explore soursop active compounds and demonstrate their mechanisms against hyperlipidemia through network pharmacology and molecular docking. OB and drug-likeness properties of the compounds from A. muricata were screened based on Lipinski’s Ro5 (Lipinski’s Rule of Five) parameters. Subsequently, the network of the compound–target–disease–pathways was constructed using Cytoscape. The target PPI (protein-protein interaction) network was built using STRING and the core targets were analyzed using GO with KEGG. The main active compounds against the targets were confirmed by molecular docking analysis. Based on the results, 158 compounds were identified in A. muricata, and the human body was found to absorb 56. It was discovered that 20 compounds were associated with cholesterol disease. The highest degree of the disease pathway of target compounds disease was annomuricin, XDH, myocardial ischemia, and metabolic pathways, respectively. The PPI showed GAPDH (glyceraldehyde-3-phosphate dehydrogenase) protein also has the highest degree. BP, CC, MF, and KEEG enrichments that play important roles are the response to drugs, plasma membranes, protein binding, and metabolic pathways. The molecular docking experiment confirmed the correlation between ligands and receptors (quercetin-XDH, coclaurine-ADRB3, fisetin, and robinetin-XDH) with binding energies of –9.3; –8.9; and –8.8 kcal   mol–1, respectively. The interactions between ligands and receptors are hydrogen, alkyl, Pi-alkyl, Pi-sigma, and van der Waals bonds. It was discovered that A. muricata provided therapeutic effects, involving multi-compounds, multi-targets, multi-diseases, and multi-pathways as well as deep insight into the pathogenesis of hyperlipidemia. This can be used to design new drugs and develop novel therapies to treat hyperlipidemia.

 

Keywords: AMPK signaling; antihyperlipidemia; herbal medicine; phytochemicals; soursop

 

Abstrak

Durian belanda (Annona muricata L.) adalah salah satu tumbuhan yang mempunyai kesan antihiperlipidemik, tetapi mekanisme tindakan asasnya masih tidak diketahui. Penyelidikan sebelumnya menggunakan TCMSP, KNApSAcK, ETCM, SwissTargetPrediction, SuperPred, CTD dan TTD untuk mengenal pasti sasaran potensi durian belanda sebagai antihiperlipidemik. Oleh itu, kajian ini bertujuan untuk meneroka sebatian aktif durian belanda dan menunjukkan mekanismenya terhadap hiperlipidemia melalui rangkaian farmakologi dan dok molekul. OB dan sifat keserupaan dadah bagi sebatian daripada A. muricata telah disaring berdasarkan parameter Lipinski's Ro5 (Lipinski's Rule of Five). Selepas itu, rangkaian sebatian-sasaran-penyakit-laluan dibina menggunakan Cytoscape. Rangkaian sasaran PPI (interaksi protein-protein) dibina menggunakan STRING dan sasaran teras dianalisis menggunakan GO dengan KEGG. Sebatian aktif utama terhadap sasaran telah disahkan oleh analisis dok molekul. Berdasarkan keputusan, 158 sebatian dikenal pasti dalam A. muricata dan tubuh manusia didapati menyerap 56. Didapati bahawa 20 sebatian dikaitkan dengan penyakit kolesterol. Peratusan tertinggi laluan penyakit, penyakit sebatian sasaran masing-masing ialah annomuricin, XDH, iskemia miokardium dan laluan metabolik. PPI menunjukkan protein GAPDH (glyceraldehyde-3-phosphate dehydrogenase) juga mempunyai peratusan tertinggi. Pengayaan BP, CC, MF dan KEEG yang memainkan peranan penting ialah tindak balas terhadap ubat, membran plasma, pengikatan protein dan laluan metabolik. Uji kaji dok molekul mengesahkan korelasi antara ligan dan reseptor (quercetin-XDH, coclaurine-ADRB3, fisetin, dan robinetin-XDH) dengan tenaga mengikat masing-masing -9.3; –8.9; dan –8.8 kcal mol–1. Interaksi antara ligan dan reseptor ialah ikatan hidrogen, alkil, Pi-alkil, Pi-sigma dan van der Waals. Didapati bahawa A. muricata memberikan kesan terapeutik, melibatkan pelbagai sebatian, pelbagai sasaran, pelbagai penyakit dan pelbagai laluan serta pandangan mendalam tentang patogenesis hiperlipidemia. Ini boleh digunakan untuk mereka bentuk ubat baharu dan membangunkan terapi baru untuk merawat hiperlipidemia.

 

Kata kunci: Antihiperlipidemia; durian belanda; fitokimia; pengisyaratan AMPK; ubat herba

 

RUJUKAN

Abdul Wahab, S.M., Jantan, I., Haque, Md.A. & Arshad, L. 2018. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents. Frontiers in Pharmacology 9: 661.

Agu, K.C. & Okolie, P.N. 2017. Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (Soursop). Food Science & Nutrition 5(5): 1029-1036.

Berghoff, S.A., Spieth, L. & Saher, G. 2022. Local cholesterol metabolism orchestrates remyelination. Trends in Neurosciences 45(4): 272-283.

Cárdenas, C., Torres-Vargas, J.A., Cárdenas-Valdivia, A., Jurado, N., Quesada, A.R., García-Caballero, M., Martínez-Poveda, B. & Medina, M.Á. 2021. Non-targeted metabolomics characterization of Annona muricata leaf extracts with anti-angiogenic activity. Biomedicine & Pharmacotherapy 144: 112263.

Chang, Y.C., Lee, T.S. & Chiang, A.N. 2012. Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages. Journal of Lipid Research 53(9): 1840-1850.

Coria-Téllez, A.V., Montalvo-Gónzalez, E., Yahia, E.M. & Obledo-Vázquez, E.N. 2018. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry 11(5): 662-691.

Daghestani, M., Daghestani, M., Daghistani, M., Eldali, A., Hassan, Z.K., Elamin, M.H. & Warsy, A. 2018. ADRB3 polymorphism rs4994 (Trp64Arg) associates significantly with bodyweight elevation and dyslipidaemias in Saudis but not rs1801253 (Arg389Gly) polymorphism in ARDB1. Lipids in Health and Disease 17(1): 58.

Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., McMorran, R., Wiegers, J., Wiegers, T.C. & Mattingly, C.J. 2019. The comparative toxicogenomics database: Update 2019. Nucleic Acids Research 47(D1): D948-D954.

Fan, L., Feng, S., Wang, T., Ding, X., An, X., Wang, Z., Zhou, K., Wang, M., Zhai, X. & Li, Y. 2022. Chemical composition and therapeutic mechanism of Xuanbai Chengqi Decoction in the treatment of COVID-19 by network pharmacology, molecular docking and molecular dynamic analysis. Molecular Diversity 27(1): 81-102.

Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F. & AEl-Shemy, H. 2014. Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific Journal of Tropical Medicine 7: S355-S363.

Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O. & Zoete, V. 2014. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research 42(W1): W32-W38.

Ghaleb, Y., Elbitar, S., Philippi, A., El Khoury, P., Azar, Y., Andrianirina, M., Loste, A., Abou-Khalil, Y., Nicolas, G., Le Borgne, M., Moulin, P., Di-Filippo, M., Charrière, S., Farnier, M., Yelnick, C., Carreau, V., Ferrières, J., Lecerf, J.M., Derksen, A., Bernard, G., Gauthier, M.S., Coulombe, B., Lütjohann, D., Fin, B., Boland, A., Olaso, R., Deleuze, J.F., Rabès, J.P., Boileau, C., Abifadel, M. & Varret, M. 2022. Whole exome/genome sequencing joint analysis of a family with oligogenic familial hypercholesterolemia. Metabolites 12(3): 262.

Gleye, C., Raynaud, S., Fourneau, C., Laurens, A., Laprévote, O., Serani, L., Fournet, A. & Hocquemiller, R. 2000. Cohibins C and D, two important metabolites in the biogenesis of acetogenins from Annona muricata and Annona nutans. Journal of Natural Products 63(9): 1192-1196.

Handayani, S.I., Sari, M.I.P., Sardjana, M.S., Kusmardi, K., Nurbaya, S., Rosmalena, R., Sinaga, E. & Prasasty, V.D. 2022. Ameliorative effects of Annona muricata leaf ethanol extract on renal morphology of alloxan-induced mice. Applied Sciences 12(18): 9141.

Ibrahim, M.A.A., Abdeljawaad, K.A.A., Abdelrahman, A.H.M. & Hegazy, M.E.F. 2021. Natural-like products as potential SARS-CoV-2 Mpro inhibitors: in-silico drug discovery. Journal of Biomolecular Structure and Dynamics 39(15): 5722-5734.

Islam, M.M., Hlushchenko, I. & Pfisterer, S.G. 2022. Low-density lipoprotein internalization, degradation and receptor recycling along membrane contact sites. Frontiers in Cell and Developmental Biology 24(10): 826379.

Jebari-Benslaiman, S., Galicia-García, U., Larrea-Sebal, A., Olaetxea, J.R., Alloza, I., Vandenbroeck, K., Benito-Vicente, A. & Martín, C. 2022. Pathophysiology of atherosclerosis. International Journal of Molecular Sciences 23(6): 3346.

Jiang, L., Xiong, Y., Tu, Y., Zhang, W., Zhang, Q., Nie, P., Yan, X., Liu, H., Liu, R. & Xu, G. 2022. Elucidation of the transport mechanism of puerarin and gastrodin and their interaction on the absorption in a Caco-2 cell monolayer model. Molecules 27(4): 1230.

Jin, J., Chen, B., Zhan, X., Zhou, Z., Liu, H. & Dong, Y. 2021. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS ONE 16(6): e0252508.

Jing, Y.S., Ma, Y.F., Pan, F.B., Li, M.S., Zheng, Y.G., Wu, L.F. & Zhang, D.S. 2022. An insight into antihyperlipidemic effects of polysaccharides from natural resources. Molecules 27(6): 1903.

Ke, W., Zhou, Y., Lai, Y., Long, S., Fang, L. & Xiao, S. 2022. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biology 49: 102207.

Li, D., Zhang, J. & Liu, Q. 2022a. Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends in Neurosciences 45(5): 401-414.

Li, J., Zhu, F., Xu, W. & Che, P. 2022b. Therapeutic properties of isoliquiritigenin with molecular modeling studies: investigation of anti-pancreatic acinar cell tumor and HMG-CoA reductase inhibitor activity for treatment of hypercholesterolemia. Archives of Medical Science. https://doi.org/10.5114/aoms/145448

Li, Y.H., Yu, C.Y., Li, X.X., Zhang, P., Tang, J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G., Zhang, Y., Li, S., Yang, F., Sun, Q., Qin, C., Zeng, X., Chen, Z., Chen, Y.Z. & Zhu, F. 2018. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Research 46(Database issue): D1121-D1127.

Lin, H., Guo, X., Liu, J., Liu, P., Mei, G., Li, H., Li, D., Chen, H., Chen, L., Zhao, Y., Jiang, C., Yu, Y., Liu, W. & Yao, P. 2022. Improving lipophagy by restoring Rab7 cycle: Protective effects of quercetin on ethanol-induced liver steatosis. Nutrients 14(3): 658.

Lipinski, C.A. 2004. Lead and drug like compounds: The rule of five revolution. Drug Discovery Today Technologies 1(4): 337-341.

Liu, C., Fan, F., Zhong, L., Su, J., Zhang, Y. & Tu, Y. 2022. Elucidating the material basis and potential mechanisms of Ershiwuwei Lvxue Pill acting on rheumatoid arthritis by UPLC-Q-TOF/MS and network pharmacology. PLoS ONE 17(2): e0262469.

Lu, S., Tang, L., Zhou, L., Lai, Y., Liu, L. & Duan, Y. 2022. Study on the multitarget mechanism and active compounds of essential oil from Artemisia argyi treating pressure injuries based on network pharmacology. Evidence-Based Complementary and Alternative Medicine 2022: e1019289.

Maharjan, B., Payne, D.T., Ferrarese, I., Giovanna Lupo, M., Kumar Shrestha, L., Hill, J.P., Ariga, K., Rossi, I., Sharan Shrestha, S., Panighel, G., Lal (Swagat) Shrestha, R., Sut, S., Ferri, N. & Dall’Acqua, S. 2022. Evaluation of the effects of natural isoquinoline alkaloids on low density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9) in hepatocytes, as new potential hypocholesterolemic agents. Bioorganic Chemistry 121: 105686.

Moghadamtousi, S.Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H.M. & Kadir, H.A. 2015. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences 16(7): 15625-15658.

Mollazadeh, H., Carbone, F., Montecucco, F., Pirro, M. & Sahebkar, A. 2018. Oxidative burden in familial hypercholesterolemia. Journal of Cellular Physiology 233(8): 5716-5725.

Naik, A.V. & Sellappan, K. 2020. Chromatographic fingerprint of essential oils in plant organs of Annona muricata L. (Annonaceae) using HPTLC. Analytical Chemistry Letters 10(2): 214-226.

Nunes, V.S., da Silva Ferreira, G. & Quintão, E.C.R. 2022. Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging 14(3): 1549-1561.

Obika, P., Beamon, J., Ali, S., Kakar, N., Analla, A., Moudden, R.E., Shihadeh, L., Patel, S., Hudson, B., Khan, F., Puglisi-Weening, M., Basist, P., Ahmad, S. & Shahid, M. 2022. 6 - Herbal medicines for the treatment of metabolic syndrome. In. Herbal Medicines, edited by Sarwat, M. & Siddique, H. Massachusetts: Academic Press. hlm. 139-191.

Pieme, C.A., Kumar, S.G., Dongmo, M.S., Moukette, B.M., Boyoum, F.F., Ngogang, J.Y. & Saxena, A.K. 2014. Antiproliferative activity and induction of apoptosis by Annona muricata (Annonaceae) extract on human cancer cells. BMC Complementary and Alternative Medicine 14(1): 516.

Pinto, Y.O., Festuccia, W.T.L. & Magdalon, J. 2022. The involvement of the adrenergic nervous system in activating human brown adipose tissue and browning. Hormones 21(2): 195-208.

Qvit, N., Joshi, A.U., Cunningham, A.D., Ferreira, J.C.B. & Mochly-Rosen, D. 2016. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein-protein interaction inhibitor reveals a non-catalytic role for GAPDH oligomerization in cell death. Journal of Biological Chemistry 291(26): 13608-13621.

Ragasa, C.Y., Soriano, G., Torres, O.B., Don, M.J. & Shen, C.C. 2012. Acetogenins from Annona muricata. Pharmacognosy Journal 4(32): 32-37.

Rojas-Armas, J.P., Arroyo-Acevedo, J.L., Palomino-Pacheco, M., Ortiz-Sánchez, J.M., Calva, J., Justil-Guerrero, H.J., Castro-Luna, A., Ramos-Cevallos, N., Cieza-Macedo, E.C. & Herrera-Calderon, O. 2022. Phytochemical constituents and ameliorative effect of the essential oil from Annona muricata L. leaves in a murine model of breast cancer. Molecules 27(6): 1818.

Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y. & Yang, L. 2014. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics 6(1): 13.

Saito, R., Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Lotia, S., Pico, A.R., Bader, G.D. & Ideker, T. 2012. A travel guide to Cytoscape plugins. Nature Methods 9(11): 1069-1076.

Sari, R.K., Prayogo, Y.H., Sari, R.A.L., Asidah, N., Rafi, M., Wientarsih, I. & Darmawan, W. 2021. Intsia bijuga heartwood extract and its phytosome as tyrosinase inhibitor, antioxidant, and sun protector. Forests 12(12): 1792.

Severino, P., D’Amato, A., Pucci, M., Infusino, F., Adamo, F., Birtolo, L.I., Netti, L., Montefusco, G., Chimenti, C., Lavalle, C., Maestrini, V., Mancone, M., Chilian, W.M. & Fedele, F. 2020. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. International Journal of Molecular Sciences 21(21): 8118.

Sherman, B.T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H.C., Imamichi, T. & Chang, W. 2022. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research 50(W1): W216-W221.

Szklarczyk, D., Gable, A., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N., Morris, J., Bork, P., Jensen, L. & von Mering, C. 2018. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47(D1): D607-D613.

Tripathi, S., Srivastava, S. & Tripathi, Y.B. 2018. Obesity and its complications: Role of autophagy. International Journal of Pharmaceutical Sciences and Research 9(8): 3100-3113.

Umar, A.H., Ratnadewi, D., Rafi, M., Sulistyaningsih, Y.C., Hamim, H. & Kusuma, W.A. 2022. Drug candidates and potential targets of Curculigo spp. compounds for treating diabetes mellitus based on network pharmacology, molecular docking and molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics. doi: 10.1080/07391102.2022.2135597

van der Vaart, J.I., Boon, M.R. & Houtkooper, R.H. 2021. The role of AMPK signaling in brown adipose tissue activation. Cells 10(5): 1122.

Varghese, J.F., Patel, R., Singh, M. & Yadav, U.C.S. 2021. Fisetin prevents oxidized low-density lipoprotein–induced macrophage foam cell formation. Journal of Cardiovascular Pharmacology 78(5): e729-e737.

Wang, B., Wang, H., Li, Y. & Song, L. 2022a. Lipid metabolism within the bone micro-environment is closely associated with bone metabolism in physiological and pathophysiological stages. Lipids in Health and Disease 21(1): 5.

Wang, H., Wang, H., Zhang, J., Luo, J., Peng, C., Tong, X. & Chen, X. 2022b. Molecular mechanism of Crataegi Folium and Alisma Rhizoma in the treatment of dyslipidemia based on network pharmacology and molecular docking. Evidence-Based Complementary and Alternative Medicine 2022: e4891370.

Wang, F.X., Zhu, N., Zhou, F. & Lin, D.X. 2021a. Natural aporphine alkaloids with potential to impact metabolic syndrome. Molecules 26(20): 6117.

Wang, Q., Du, L., Hong, J., Chen, Z., Liu, H., Li, S., Xiao, X. & Yan, S. 2021b. Molecular mechanism underlying the hypolipidemic effect of Shanmei Capsule based on network pharmacology and molecular docking. Technology and Health Care 29(S1): 239-256.

Xu, X.Y., Choi, H.S., Park, S.Y., Kim, J.K., Seo, K.H., Kim, H. & Kim, Y.J. 2022. Hibiscus syriacus L. cultivated in callus culture exerts cytotoxicity in colorectal cancer via Notch signaling-mediated cholesterol biosynthesis suppression. Phytomedicine 95: 153870.

Yang, J., Zhang, Y., Jiang, L., Li, C., Sun, Z., Zhang, Y., Lin, T., Jiang, Y. & Liu, B. 2022. A triple combination strategy of UHPLC-MSn, hypolipidemic activity and transcriptome sequencing to unveil the hypolipidemic mechanism of Nelumbo nucifera alkaloids. Journal of Ethnopharmacology 282: 114608.

Yao, Y.S., Li, T.D. & Zeng, Z.H. 2020. Mechanisms underlying direct actions of hyperlipidemia on myocardium: An updated review. Lipids in Health and Disease 19(1): 23.

Ye, J., Li, L. & Hu, Z. 2021. Exploring the molecular mechanism of action of Yinchen Wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation. BioMed Research International 2021: e9965906.

Yu, J., Yuan, H., Bao, L. & Si, L. 2021. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Molecular Diversity 25(1): 233-248.

 

*Pengarang untuk surat-menyurat; email: ahuhalim76@yahoo.com

   

sebelumnya