Sains Malaysiana 52(3)(2023): 941-951

http://doi.org/10.17576/jsm-2023-5203-18

 

Characterization Assessment on Nanofiltration Membrane using Steric-Hindrance Pore (SHP) and Teorell-Meyer-Sievers (TMS) Models

(Penilaian Pencirian pada Membran Penapisan Nano menggunakan Model Steric-Hindrance Pore (SHP) dan Teorell-Meyer-Sievers (TMS))

 

MAZRUL NIZAM ABU SEMAN,1,2 NORA’AINI ALI,3,4,* NURUL AIN JALANNI,1 CHE KU MUHAMMAD FAIZAL CHE KU YAHYA1 & NORHAFIZA ILYANA YATIM4

 

1Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

2Earth Resources and Sustainability (ERAS) Centre, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

3Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

4Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Diserahkan: 31 Mei 2022/Diterima: 9 Januari 2023

 

Abstract

Interfacial polymerization (IP) is a simple process for modifying thin-film composite (TFC) polymers that can be used as separation membranes in water treatment. This work describes the IP process for the preparation of polyester TFC membranes using organic monomers, in particular triethanolamine (TEOA) and trimesoyl chloride (TMC). This work includes an evaluation of monomer concentration and polymerization reaction time as variables to determine the membrane properties and its performance as acid humic removal. The characterization of TFC membranes was investigated using field emission scanning electron microscopy (FESEM), steric hindrance pore (SHP) and Teorell-Meyer-Sievers model (TMS). This IP technique resulted in the membrane (NF-PES8-35) having the lowest contact angle (θ=34.0±0.35) and lower hydrophobicity (θ=62.6 ± 0.33) compared to the unmodified membrane. The rejection of NaCl by NF-PES8-35 membrane showed the highest 0.001 M NaCl (62.42%), while NF-PES4-15 membrane showed the lowest (2.4%). The highest removal of humic acid (97.8%) was achieved when separation was performed with the NF-PES6-35 membrane and the high performance polyester TFC membranes were exhibited in the water purification filtration system.

 

Keywords: Characterization; nanofiltration membrane; steric-hindrance pore model; Teorell–Meyer–Sievers model

 

Abstrak

Pempolimeran antara muka (IP) ialah proses mudah untuk mengubah suai polimer komposit saput nipis (TFC) yang boleh digunakan sebagai membran pemisahan dalam rawatan air. Kertas ini menerangkan proses IP bagi penyediaan membran poliester TFC dengan menggunakan monomer organik, khususnya triethanolamine (TEOA) dan trimesoyl chloride (TMC). Kertas ini meliputi penilaian terhadap kepekatan monomer dan masa tindak balas pempolimeran sebagai pemboleh ubah bagi menentukan sifat membran dan prestasinya sebagai penyingkir asid humik. Pencirian membran TFC dikaji menggunakan mikroskopi pancaran medan elektron penskanan (FESEM), medan pelepasan mikroskop elektron pengimbas (FESEM), Model steric-hindrance pore (SHP) dan Model Teorell-Meyer–Sievers (TMS). Teknik IP ini menghasilkan membran (NF-PES8-35) yang mempunyai sudut sentuh terendah (θ=34.0±0.35) dan kehidrofobian yang lebih rendah (θ=62.6 ± 0.33) berbanding membran yang tidak diubah suai. Penolakan NaCl oleh membran NF-PES8-35 menunjukkan yang tertinggi 0.001 M NaCl (62.42%), manakala membran NF-PES4-15 menunjukkan yang terendah (2.4%). Penyingkiran tertinggi asid humik (97.8%) diperoleh apabila pemisahan dilakukan menggunakan membran NF-PES6-35 dan menunjukkan membran TFC poliester berprestasi tinggi dalam sistem penapisan pembersihan air.

 

Kata kunci: Membran nanofiltrasi; model steric-hindrance pore; model Teorell–Meyer–Sievers; pencirian

 

RUJUKAN

Abu Seman, M.N., Khayet, M. & Hilal, N. 2010. Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. Journal of Membrane Science 348: 109-116.

Ahmed, F.E., Hashaikeh, R., Diabat, A. & Hilal, N. 2019. Mathematical and optimization modelling in desalination: State-of-the-art and future direction. Desalination 469: 114092.

Arribas, P., García-Payo, M.C., Khayet, M. & Gil, L. 2020. Improved antifouling performance of polyester thin film nanofiber composite membranes prepared by interfacial polymerization. Journal of Membrane Science 598: 117774.

Bouchoux, A., Roux-de, B.H. & Lutin, F. 2005. Nanofiltration of glucose and sodium lactate solutions: Variations of retention between single-and mixed-solute solutions. Journal of Membrane Science 258(1-2): 123-132.

Bowen, W.R., Mohammad, A.W. & Hilal, N. 1997. Characterization of nanofiltration membranes for predictive purposes - Use of salts uncharged solutes and atomic force microscopy. Journal of Membrane Science 126(1): 91-105.

Ding, Y., Zhu, J. & Liu, D. 2021. Separation performance and mechanism of the novel modified polyether sulfone composite nanofiltration membrane for the detection on dissolved organic nitrogen. Water Environment Research 93(9): 1748-1761.

Donnan, F.G. 1995. Theory of membrane equilibria and membrane potentials in the presence of non-dialyzing electrolytes. A contribution to physical-chemical physiology. Journal of Membrane Science 100(1): 45-55.

Farahbakhsh, J., Vatanpour, V., Khoshnam, M. & Zargar, M. 2021. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. Reactive and Functional Polymers 166: 105015.

Feng, C., Khulbe, K.C. & Matsuura, T. 2010. Recent progress in the preparation characterization and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. Journal of Applied Polymer Science 115(2): 756-776.

Geens, T., Goeyens, L. & Covaci, A. 2011. Are potential sources for human exposure to bisphenol-A overlooked? International Journal of Hygiene and Environmental Health 214: 339-347.

Hilal, N., Kochkodan, V., Al-Khatib, L. & Levadna, T. 2004. Surface modified polymeric membranes to reduce (bio) fouling: A microbiological study using E. coli. Desalination 167: 293-300.

Imbrogno, A. & Schäfer, A.I. 2019. Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end). Journal of Membrane Science 585: 67-80.

Jalanni, N.A., Abu Seman, M.N. & Mohammad Faizal, C.K. 2015. New polyester nanofiltration (NF) membrane for humic acid removal. In Advanced Materials Research 1107: 383-388.

Jalanni, N.A., Abu Seman, M.N. & Mohammad Faizal, C.K. 2013. Investigation of new polyester nanofiltration (NF) membrane fouling with humic acid solution. Jurnal Teknologi 65(4): 69-72.

Jayarani, M.M. & Kulkarni, S.S. 2000. Thin-film composite poly (esteramide)-based membranes Desalination 130: 17-30.

Ji, C., Zhai, Z., Jiang, C., Hu, P., Zhao, S., Xue, S., Yang, Z., He, T. & Niu, Q.J. 2021. Recent advances in high-performance TFC membranes: A review of the functional interlayers. Desalination 500: 114869.

Kristensen, M.B., Bentien, A., Tedesco, M. & Catalano, J. 2017. Counter-ion transport number and membrane potential in working membrane systems. Journal of Colloid and Interface Science 504: 800-813.

Kubwabo, C., Kosarac, I., Stewart, B., Gauthier, B.R., Lalonde, K. & Lalonde, P.J. 2009. Migration of bisphenol A from plastic baby bottles baby bottle liners and reusable polycarbonate drinking bottles. Food Additives and Contaminants 26: 928-937.

Lau, W.J. & Ismail, A.F. 2009. Theoretical studies on the morphological and electrical properties of blended PES/SPEEK nanofiltration membranes using different sulfonation degree of SPEEK. Journal of Membrane Science 334: 30-42.

Michałowicz, J. 2014. Bisphenol A - Sources toxicity and biotransformation. Environment Toxicology and Pharmacology 37: 738-758.

Mohammad, A.W., Hilal, N. & Abu Seman, M.N. 2003. A study on producing composite nanofiltration membranes with optimized properties. Desalination 158(1-3): 73-78.

Saffarimiandoab, F., Gul, B.Y., Tasdemir, R.S., Ilter, S.E., Unal, S., Tunaboylu, B., Menceloglu, Y.Z. & Koyuncu, I. 2021. A review on membrane fouling: Membrane modification. Desalination Water Treatment 216: 47-70.

Seman, A., Jalanni, N.A., Faizal, C.K.M. & Hilal, N. 2013. Polyester thin film composite nanofiltration membranes prepared by interfacial polymerization technique for removal of humic acid. In Developments in Sustainable Chemical and Bioprocess Technology, edited by Pogaku, R., Bono, A. & Chu, C. Boston: Springer. pp. 111-117.

Sharabati, J.A.D., Erkoc-Ilter, S., Guclu, S., Koseoglu-Imer, D.Y., Unal, S., Menceloglu, Y.Z., Ozturk, I. & Koyuncu, I. 2022. Zwitterionic polysiloxane-polyamide hybrid active layer for high performance and chlorine resistant TFC desalination membranes. Separation and Purification Technology 282: 119965.

Sun, P., Liu, X., Zhang, M., Li, Z., Cao, C., Shi, H., Yang, Y. & Zhao, Y. 2021. Sorption and leaching behaviors between aged MPs and BPA in water: The role of BPA binding modes within plastic matrix. Water Research 195: 116956.

Sun, Y. & Song, L. 2021. A numerical method for electrical potential on membranes with fixed charge. Authorea Preprints 10(4): E426.

Viet, N.D., Jang, D., Yoon, Y. & Jang, A. 2021. Enhancement of membrane system performance using artificial intelligence technologies for sustainable water and wastewater treatment: A critical review. Critical Reviews in Environmental Science and Technology 52(20): 3689-3719.

Wang, K.Y. & Chung, T.S. 2006. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. Journal of Membrane Science 281: 307-315.

Wang, R. & Lin, S. 2021. Pore model for nanofiltration: History theoretical framework key predictions limitations and prospects. Journal of Membrane Science 620: 118809.

Wang, Z., Liu, G., Fan, Z., Yang, W., Wang, J. & Wang, S. 2007. Experimental study on treatment of electroplating wastewater by nanofiltration. Journal of Membrane Science 305: 85-195.

Wu, D., Zhang, X., Chen, Y. & Yu, S. 2020. Thin film composite polyesteramide nanofiltration membranes fabricated from carboxylated chitosan and trimesoyl chloride. Korean Journal of Chemical Engineering 37: 307-321.

 

*Pengarang untuk surat-menyurat; email: noraaini@umt.edu.my

   

sebelumnya