Sains Malaysiana 52(4)(2023):
1101-1120
http://doi.org/10.17576/jsm-2023-5204-06
Daily
Spectral Ocean Surface Albedo due to Small Chlorophyll Concentrations and
Cloudy Conditions for 440 nm Wavelength in Coastal Waters
(Permukaan Lautan
Spektrum Harian Albedo disebabkan oleh Kepekatan Klorofil Kecil dan Keadaan
Mendung untuk Panjang Gelombang 440 nm di Perairan Pantai)
PHILIPP GOLOVCHENKO1,
YUSRI YUSUP2 & LIEW JUNENG1,*
1Department of Earth Sciences and
Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Environmental Technology, School of
Industrial Technology, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
Diserahkan:
9 Disember 2022/Diterima: 25 Mac 2023
Abstract
The spectral daily Ocean Surface
Albedo (OSA) is a sensitive parameter dependent on sea surface bio-optical
properties and solar radiation distribution due to the transmissivity of the
atmosphere. We analyzed the OSA sensitivity to the small concentrations of sea
surface phytoplankton due to cloudy conditions, based on measured half-hourly
global radiation data, and phytoplankton variability represented by
chlorophyll-a concentrations at the upper layers over the Malacca Strait. The
influence of the sea surface phytoplankton was examined by using the
chlorophyll-a maximum absorption wavelength (440 nm) for a detailed examination
of the real phytoplankton impact presented by small concentrations (0.39 - 0.69
mg/m3). The atmosphere transmittance determination was made over the
period from January 2016 to March 2016 and January 2017 to March 2017 using
hourly clearness index (KTh) estimation. The aim of current study
was to examine the influence of sea surface phytoplankton concentrations on the
radiation budget and to account the role that the phytoplankton plays in detail
short-scale OSA parameterization. Daily timescale spectral OSA includes the
bio-optical modelling part, which allowed us to investigate the patterns of
diurnal variability of the main reflectance parameters, using Jin et al. scheme
for albedo components (direct and diffuse) estimation, was computed. The OSA
variability analysis confirmed the bio-optical feedback presented by apparent
properties of the coastal waters for the observed conditions. The proposed
calculation scheme accounted for the sea surface optical behavior with low
concentrations of chlorophyll-a and suggests that albedo variability depends
not only on the angle factors, even with the low phytoplankton influence (less
than 1 mg/m3). It was found that the phytoplankton pigment
absorption properties have less effect in albedo parameterization while the
chlorophyll-a concentrations are less than 0.5 mg/m3.
Keywords: Clearness index; ocean surface albedo; ocean upper-layers; photosynthetically
active radiation; phytoplankton influence
Abstrak
Spektral harian Albedo Permukaan
Lautan (OSA) adalah suatu parameter sensitif yang bergantung kepada ciri
bio-optik lautan dan taburan radiasi solar radiasi berdasarkan ketransmisian atmosfera.
Kajian in menganalisis kesensitifan OSA terhadap kepekatan rendah fitoplankton
permukaan lautan keadaan awan berdasarkan data cerapan radiasi global
setengah-jam dan juga keragaman fitoplankton yang diwakili oleh kepekatan
klorofil-a lapisan atas permukaan Laut China Selatan. Pengaruh fitoplankton
permukaan lautan adalah dikaji berasaskan panjang gelombang serapan maksimum
(40 nm) untuk mendapatkan gambaran jelas impak sebenar fitoplankton kepekatan
rendah (0.39 - 0.69 mg/m3). Penentu transmisi atmosfera dihasilkan
dalam tempoh Januari 2016 ke Mac 2016 dan juga dari Januari 2017 ke Mac 2017
dengan menggunakan jangkaan indeks kecerahan (KTh) berjam. Tujuan
kajian ini adalah untuk mengkaji pengaruh fitoplakton permukaan laut ke atas
bajet radiasi serta menentukan peranan fitoplankton dalam pemparameteran OSA
skala pendek. Spektral OSA berskala harian dihitung termasuk bahagian
permodelan bio-optik yang membolehkan kajian corak keragaman diurnal parameter
pantulan utama menggunakan skema Jin et al. untuk komponen albedo (langsung dan
sebaran). Analisis keragaman OSA mengesahkan bahawa suap-balik bio-optik wujud
bagi ciri perairan persisiran keadaan cerapan. Skema pengiraan yang dicadangkan
ini mengambi kira ciri optik permukaan laut dengan kepekatan klrofil-a rendah
dan mencadangkan bahawa perubahan albedo bukan sahaja bergantung kepada faktor
sudut walaupun dengan pengaruh rendah fitoplankton (kurang daripada 1 mg/m3).
Didapati ciri serapan pigmen fitoplankton mempunyai kesan kecil terhadap
pemparameteran albedo apabila kepekatan klorofil-a adalah rendah daripada 0.5
mg/m3.
Kata
kunci: Albedo permukaan laut; indeks kecerahan; lapisan atas
lautan; pengaruh fitoplankton; radiasi aktif fotosintesis
RUJUKAN
Ångström, A. 1924. Solar and
terrestrial radiation. Report to the international commission for solar
research on actinometric investigations of solar and atmospheric radiation. Q. J. Roy. Meteor. Soc. 50: 121-126.
Bricaud, A., Claustre, H., Ras, J.
& Oubelkheir, K. 2004. Natural variability of phytoplanktonic absorption in
oceanic waters: Influence of the size structure of algal populations. Journal of Geophysical Research 109:
1-12.
Carruthers, T., Longstaff, B.,
Dennison, W., Abal, E. & Aio, K. 2001. Measurement of light penetration in
relation to seagrass. Editor 1- Short FT, Editor 2- Coles RG. Global Seagrass Research Methods. Amsterdam: Elsevier. pp. 369-392.
Dera, J. 1992. Small-scale air-sea
interaction and its influence on the structure of water masses in the sea. Marine
Physics. Elsevier Oceanography
Series. Vol. 53. Chapter 7.
Erbs, D.G., Klein, S.A. &
Duffie, J.A. 1982. Estimation of the diffuse radiation fraction for hourly,
daily and monthly-average global radiation. Solar
Energy 28(2): 293-302.
Frouin, R. & Iacobellis, S.F.
2002. Influence of phytoplankton on the global radiation budget. Journal of Geophysical Research 107(D19): ACL 5-1-ACL 5-10.
Golovchenko, Ph., Yusup, Y., Juneng,
L. & Tangang, F. 2020. Daily spectral ocean surface albedo (OSA)
parameterization in case of clearness index (Kt) and phytoplankton
variability in Malacca Strait. Estuarine, Coastal and Shelf Science 244: 1-10.
Gordon, H. 1987. Bio-optical model
describing the distribution of irradiance at the sea surface resulting from a
point source embedded in the ocean. Applied
Optics 26(19): 4133-4148.
Gupta, S., Ritchey, N., Wilber, A.
& Whitlock, C. 1999. A climatology of surface radiation budget derived from
satellite data. J. Climate 12:
2691-2710.
Haltrin, V.I., McBride III, W.E.
& Arnone, R.A. 2001. Spectral approach to calculate specular reflection of
light from wavy water surface. Proceedings of D.S. Rozhdestvensky Optical
Society: International Conference Current Problems in Optics of Natural Waters
(ONW‘2001). St. Petersburg, Russia.
Hedges, J. & Keil, R. 1995.
Sedimentary organic-matter preservation-an assessment and speculative
synthesis. Marine Chemistry 49: 81-115.
Ideriah, F.J.K. & Suleman, S.O.
1989. Sky conditions at Ibadan during 1975-1980. Solar Energy 43(6): 325-330.
Jin, Z., Qiao, Y., Wang, Y., Fang,
Y. & Yi, W. 2011. A new parameterization of spectral and broadband ocean
surface albedo. Optics Express 19:
26429-26443.
Jin, Z., Charlock, T., Smith Jr., W.
& Rutledge, K. 2004. A parameterization of ocean surface albedo. Geophys. Res. Let. 31: L22301.
Lewis, M.R., Carr, M.E., Feldman, G.C., Esaias, W. & McClain, C.R. 1990. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347: 543-545. https://doi.org/10.1038/347543a0
Loisel, H. & Morel, A. 1998.
Light scattering and chlorophyll concentration in case 1 waters: A
reexamination. Limnol. Oceanogr.
43(5): 847-858.
Maleki, S.A., Hizam, H. & Gomes,
C. 2017. Estimation of hourly, daily and monthly global solar radiation on
inclined surfaces: Models re-visited. Energies 10(134): 1-28.
Morel, A. 1988. Optical modeling of
the upper ocean in relation to its biogenous matter content (Case 1 waters). Journal of Geophysical Research 93:
10749-10768.
Morel, A. & Maritorena, S. 2001.
Bio-optical properties of oceanic waters: A reappraisal. Journal of Geophysical Research 106: 7163-7180.
Morel, A. & Gentili, B. 1991.
Diffuse reflectance of oceanic waters: Its dependence on Sun angle as
influenced by the molecular scattering contribution. Applied Optics 30: 4427-4438.
Morel, A. & Prieur, L. 1977.
Analysis of variations in ocean color. Limnology
and Oceanography 22: 709-722.
Ohlmann, J.C. & Siegel, D.A.
2000. Ocean radiant heating. Part II: Parameterizing solar radiation
transmission through the upper ocean. J.
Phys. Oceanogr. 30: 1849-1865.
Okogbue, E., Adedokun, J. &
Holmgren, B. 2009. Hourly and daily clearness index and diffuse fraction at a
tropical station, Ile-Lfe, Nigeria. International
Journal of Climatology 29: 1035-1047.
Orgill, J.F. & Hollands, G.T.
1977. Correlation equation for hourly diffuse radiation on a horizontal
surface. Solar Energy 19: 357-359.
Patara, L., Vichi, M., Masina, S.,
Fogli, P. & Manzini, E. 2012. Global response to solar radiation absorbed
by phytoplankton in a coupled climate model. Climate Dynamics 39: 1951-1968.
Pope, R. & Fry, E. 1997.
Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity
measurements. Applied Optics 36:
8710-8723.
Prieur, L. & Sathyendranath, S.
1981. An optical classification of coastal and oceanic waters based on the
specific spectral absorption curves of phytoplankton pigments dissolved organic
matter, and other particulate materials.
Limnol. Oceanogr. 26: 671-689.
Santos, J., Pinazo, J. & Canada,
J. 2003. Methodology for generating daily clearness index values Kt starting
from the monthly average daily value Kt. Determining the daily
sequence using stochastic models. Renewable
Energy 28: 1523-1544.
Sanusi, Y.K. & Ojo, M.O. 2015.
Evaluation of clearness index and diffuse ratio of some locations in South
Western, Nigeria using solar radiation data. Journal of Applies Physics 7(5): 45-51.
Sathyendranath, S., Jackson, T.,
Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Clements, O., Cipollini,
P., Danne, O., Dingle, J., Donlon, C., Grant, M., Groom, S., Krasemann, H.,
Lavender, S., Mazeran, C., Mélin, F., Müller, D., Steinmetz, F., Valente, A.,
Zühlke, M., Feldman, G., Franz, B., Frouin, R., Werdell, J. & Platt, T.
2021. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version
5.0 Data. NERC EDS Centre for Environmental Data Analysis
Séférian, R., Baek, S., Boucher, O.,
Dufresne, J., Decharme, B., Saint-Martin, D. & Roehrig, R. 2018. An
interactive ocean surface albedo scheme (OSAv1.0): Formulation and evaluation
in ARPEGE-Climat (V 6.1) and LMDZ (V5A). Geosci.
Model Dev. 11: 321-338.
Siegel, D.A., Ohlmann, J.C.,
Washburn, L., Bidigare, R.R., Nosse, C.T., Fields, E. & Zhou, Y. 1995.
Solar radiation, phytoplankton pigments and the radiant heating of the
equatorial Pacific warm pool. Journal of
Geophysical Research: Oceans 100(C3): 4885-4891.
Solonenko, M.G. & Mobley, C.D.
2015. Inherent optical properties of Jerlov water types. Applied Optics 54: 5392-5401.
Smith, R. & Baker, K. 1981.
Optical properties of the clearest natural waters (200-800 nm). Applied Optics 20(2): 177-184.
Somayajula, S., Devred, E.,
Belanger, E., Antoine, D., Velucci, V. & Babin, M. 2018. Evaluation of
sea-surface photosynthetically available radiation algorithms under various sky
conditions and solar elevations. Applied
Optics 57: 3088-3103.
Sosik, H.M. & Mitchell, B.G.
1991. Absorption, fluorescence, and quantum yield for growth in
nitrogen-limited Dunaliella tertiolecta. Limnol. Oceanogr. 36: 910-921.
Tan, C.K., Ishizaka, J., Matsumura,
S., Yusoff, F.M. & Mohamed, Hj. Mohd. 2005. Seasonal variability of SeaWIFS
chlorophyll a in the Malacca Straits in relation to Asian monsoon. Continental Shelf Research 26: 168-178.
Tetsuichi, F. & Taguchi, S.
2002. Variability in chlorophyll a specific absorption coefficient in marine
phytoplankton as a function of cell size and irradiance. Journal of Plankton Research 24: 859-874.
Tsubo, M. & Walker, S. 2004.
Relationships between photosynthetically active radiation and clearness index
at Bloemfontein, South Africa. Theoretical
and Applied Climatology 80: 17-25.
Ye, H., Kalhoro, M., Morozov, E.,
Tang, D., Wang, S. & Thies, Ph. 2017. Increased chlorophyll-a concentration
in the South China Sea caused by occasional sea surface temperature fronts at
peripheries of eddies. International
Journal of Remote Sensing 39(13): 4360-4375.
Yoder, J.A. & Kennely, M.A.
2003. Seasonal and ENSO variability in global ocean phytoplankton chlorophyll
derived from 4 years of SeaWiFS measurements. Global Biogeochemical Cycles 17:
1-14.
*Pengarang untuk surat-menyurat;
email: juneng@ukm.edu.my
|