Sains Malaysiana 52(4)(2023): 1189-1202

http://doi.org/10.17576/jsm-2023-5204-12

 

Fe/ZSM-5-Catalyzed-Synthesis of 1,4-Dihydropyridines under Ultrasound Irradiation and Their Antioxidant Activities

(Fe/ZSM-5-Pemangkin-Sintesis 1,4-Dihidropiridin di Bawah Sinaran Ultrabunyi dan Aktiviti Antioksidannya)

 

YAYAN DWI SUTARNI, BAMBANG PURWONO, EKO SRI KUNARTI & MUHAMMAD IDHAM DARUSSALAM MARDJAN*

 

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

 

Diserahkan: 24 Julai 2022/Diterima: 26 Februari 2023

 

Abstract

A small library of 1,4-dihydropyridines have been synthesized from ethyl acetoacetate, ammonium acetate and various aldehydes via Hantzsch multicomponent reaction in the presence of Fe/ZSM-5 catalyst under ultrasound irradiation for 90 min. 1,4-Dihydropyridine derivatives were obtained in 64-86% yields and the heterogeneous Fe/ZSM-5 catalyst can be employed for four reaction cycles without losing the catalytic activity. All products were evaluated for their antioxidant activities using the DPPH method and compound 4g was found to be an effective antioxidant agent with DPPH activity of 83.5%.

 

Keywords: Antioxidant assay; Fe/ZSM-5 catalyst; ultrasound-assisted-multicomponent reaction; 1,4-dihydropyridines

 

Abstrak

Terbitan 1,4-dihidropiridin telah disintesis daripada etil asetoasetat, ammonium asetat dan pelbagai aldehid melalui tindak balas pelbagai komponen Hantzsch yang dimangkinkan oleh Fe/ZSM-5 di bawah penyinaran ultrabunyi selama 90 minit. Terbitan 1,4-dihidropiridin diperoleh dengan hasil 64-86% dan mangkin heterogen Fe/ZSM-5 boleh digunakan untuk 4 kitaran tindak balas tanpa kehilangan aktiviti pemangkin. Semua produk telah dinilai untuk aktiviti antioksidannya menggunakan kaedah DPPH dan sebatian 4g didapati sebagai agen antioksidan yang berkesan dengan aktiviti DPPH sebesar 83.5%.

 

Kata kunci: Pemangkin Fe/ZSM-5; tindak balas pelbagai komponen dibantu ultrabunyi; ujian antioksidan; 1,4-dihidropiridin

 

RUJUKAN

Abdel-Mohsen, H.T., Conrad, J. & Beifuss, U. 2012. Laccase-catalyzed oxidation of Hantzsch 1,4-dihydropyridines to pyridines and a new one pot synthesis of pyridines. Green Chem. 14: 2686-2690.

Allahresani, A., Sangani, M.M. & Nasseri, M.A. 2020. CoFe2O4@SiO2-NH2-CoII NPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-dihydropyridine derivatives. Appl. Organomet. Chem. 34(9): e5759.

Alponti, L.H.R., Picinini, M., Urquieta-Gonzalez, E.A. & Corrêa, A.G. 2021. USY-zeolite catalyzed synthesis of 1,4-dihydropyridines under microwave irradiation: Structure and recycling of the catalyst. J. Mol. Struc. 1227: 1-7.

Arglye, M.D. & Bartholomew, C.H. 2015. Heterogeneous catalyst deactivation and regeneration: A review. Catalysts 5: 145-269.

Cahyana, A.H., Liandi, A.R., Safitri, Y. & Yunarti, R.T. 2020. Synthesis of 1,4-dihydropiridine with aromatic of cinnamaldehyde compound using NiFe2O4 mnps catalyst and the activity test as antioxidant. Rasayan J. Chem. 13(3): 1491-1497.

Draye, M., Estager, J. & Kardos, N. 2019. Organic sonochemistry: Ultrasound in green organic synthesis. In Activation Methods Sonochemistry High Pressure, Vol. 2, edited by Goddard, J-P., Malacria, M. & Ollivier, C. ISTE Ltd and John Wiley & Sons, Inc. 2019: 1-93.

Ennaert, T., Aelst, J.V., Dijkmans, J., Clercq, R.D., Schutsyer, W., Dusselier, M., Verboekend, D. & Sels, B.F. 2016. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45: 584-611.

Heusler, A., Fliege, J., Wagener, T. & Glorius, F. 2021. Substituted dihydropyridine synthesis by dearomatization of pyridines. Angew. Chem. Int. Ed. 60: 13793-13797.

Hyunh, T.M., Armbruster, U., Pohl, M.M., Schneider, M., Radnik, J., Hoang, D., Phan, B.M.Q., Nguyen, D.A. & Martin, A. 2014. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts. Chem. Cat. Chem. 6: 1940-1951.

Ioan, P., Carosati, E., Micucci, M., Cruciani, G., Broccatelli, F., Zhoroz, B.S., Chairini, A. & Budriesi, R. 2011. 1,4-dihydropyridine scaffold in medicinal chemistry, the story so far and perspective (Part 1): Action in ion channels and GPCRs. Curr. Med. Chem. 18: 4901-4922.

Jagadale, M., Kale, D., Salunkhe, R., Rajmane, M. & Rashinkar, G. 2018. Compatibility of supported ionic liquid phase catalysts under ultrasonication. J. Mol. Liq. 265: 525-535.

Khalafi-Nezad, A., Panahi, F., Mohammadi, S. & Foroughi, H.O. 2013. A green and efficient procedure for one-pot synthesis of xanthenes and acridines using silica boron-sulfuric acid nanoparticles (SBSANs) as a solid Lewis-protic acid. J. Iran Chem. Soc. 10: 189-200.

Kostyniuk, A., Key, D. & Mdleleni, M. 2020. 1-hexene isomerization over bimetallic M-Mo-ZSM-5 (M: Fe, Co, Ni) zeolite catalysts: Effects of transition metals addition on the catalytic performance. J. Energy Inst. 93: 552-564.

Kusampally, U., Dhachapally, N., Kola, R. & Kamatala, C. 2020. Zeolite anchored Zr-ZSM-5 as an ecofriendly, green, and reusable catalyst in Hantzsch synthesis of dihydropiridine derivatives. Mater. Chem. Phys. 242: 1-8.

Maleki, A., Eskandarpour, V., Rahimi, J. & Hamidi, N. 2019. Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr. Polym. 208: 251-260.

Manvar, A.T., Pissurlenkar, R.R.S., Virsodia, V.R., Upadhyay, K.D., Manvar, D.R., Mishra, A.K., Acharya, H.D., Parecha, A.R., Dholakia, C.D., Shah, A.K. & Coutinho, E. 2010. Synthesis, in-vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines. Mol. Divers. 14: 285-305.

Mohammed, B.B., Hsini, A., Abdellaoui, Y., Oualid, H.A., Laabd, M., Ouardi, M., Addi, A., Yamni, K. & Tijani, N. 2020. Fe-ZSM-5 zeolite for efficient removal of basic fuchsin dye from aqueous solutions: Synthesis, characterization and adsoprtion process optimization using BBD-RSM modelling. J. Env. Chem. Eng. 8: 1-11.

Niaz, H., Kashtoh, H., Khan, J.A.J., Khan, A., Wahab, A., Alam, M.T., Khan, K.M., Perveen, S. & Choudhary, I. 2015. Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. Eur. J. Med. Chem. 95: 199-209.

Nikpassand, M., Mamaghani, M. & Tabatabaeian, K. 2009. An efficient one-pot three-component synthesis of fused 1,4-dihydropyridines using HY-Zeolite. Molecules 14: 1468-1474.

Niwa, M. & Katada, N. 2013. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: A review. Chem. Rec. 13: 432-455.

Oskuie, E.F., Azizi, S., Ghasemi, Z., Pirouzmand, M., Kojanag, B.N. & Soleymani, J. 2020. Zn/MCM-41-catalyzed unsymmetrical Hantzsch reaction and the evaluation of optical properties and anti-cancer activities of the polyhydroquinoline productsMonatsh. Chem. 151: 243-249.

Patil, M., Karhale, S., Kudale, A., Kumbhar, A., More, S. & Helavi, V. 2019. Green protocol for the synthesis of 1,8-Dioxo-decahydroacridines by Hantzsch condensation using citric acid as organocatalyst. Curr. Sci. 116: 936-942.

Patil, D., Chandam, D., Mulik, A., Patil, P., Jagadale, S., Kant, R., Gupta, V. & Deshmukh, M. 2014. Novel Brønsted acidic ionic liquid ([CMIM][CF3COO]) prompted multicomponent Hantzsch reaction for the eco-friendly synthesis of acridinediones: An efficient and recyclable catalyst. Catal. Lett. 144: 949-958.

Purnamasari, A.P., Sari, M.E.M., Kusumaningtyas, D.T., Suprapto, S., Hamid, A. & Prasetyoko, D. 2017. The effect of mesoporous H-ZSM-5 crystallinity as a CaO support on the transesterification of used cooking oil. Bull. Chem. React. 12: 329-336.

Rahman, M.M., Abu-Zied, B.M. & Asiri, A.M. 2018. Cu-loaded ZSM-5 zeolites: An ultra-sensitive phenolic sensor development for environmental safety. J. Ind. Eng. Chem. 61: 304-313.

Samaunnisa, A., Mohammed, R., Venkataramana, C.H.S. & Madhavan, V. 2013. Evaluation of 2,6-Dimethyl-N3,N5-diphenyl-1,4-dihydropyridine-3, 5-dicarbohydrazide derivatives for in vivo anti-inflammatory and analgesic activities. Int. Res. J. Pharm. 4(9): 156-159.

Sancheti, S.V. & Gogate, P.R. 2017. A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason. Sonochem. 36: 527-543.

Sehout, I., Boulcina, R., Boumoud, B., Boumoud, T. & Debache, A. 2017. Solvent-free synthesis of polyhydroquinoline and 1,8-dioxodecahydroacridine derivatives via the Hantzsch reaction catalyzed by a natural organic acid: A green method. Synth. Comm. 47: 1185-1191.

Srinivasan, V.V., Pachamutu, M.P. & Maheswari, R. 2015. Lewis acidic mesoporous Fe-TUD-1 as catalysts for synthesis of Hantzsch 1,4-dihydropyridine derivatives. J. Porous Mater. 22: 1187-1194.

Tursunov, O., Kustov, L. & Tilyabaev, Z. 2019. Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-Hexane to aromatics. J. Pet. Sci. Eng. 180: 773-778.

Valadi, K., Gharibi, S., Taheri-Ledari, R. & Maleki, A. 2020. Ultrasound-assisted synthesis of 1,4-Dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite. Solid State Sci. 101: 1-7.

Vekariya, H. & Patel, H.D. 2015. Sulfonated polyethylene glycol (PEG-OSO3H) as a polymer supported biodegradable and recyclable catalyst in green organic synthesis: Recent advances. Chem. Soc. Rev. 5: 49006-49030.

Wang, Q., Zhu, M., Zhang, H., Xu, C., Dai, B. & Zhang, J. 2019. Enhanced catalytic performance of Zr-ZSM-5-supported Zn for the hydration of acetaldehyde. Catal. Commun. 120: 33-37.

 

*Pengarang untuk surat-menyurat; email: idham.darussalam@ugm.ac.id

 

 

   

sebelumnya