Sains Malaysiana 52(4)(2023):
1303-1314
http://doi.org/10.17576/jsm-2023-5204-20
Kesan
Suhu Pensinteran terhadap Mikrostruktur dan Sifat Mekanikal Perovskit Seramik
SrFe0.9Ti0.1O3-δ-SDC
(Effect of Sintering Temperature on the
Microstructure and Mechanical Property of SrFe0.9Ti0.1O3-δ-SDC
Ceramic Perovskite)
AZREEN
JUNAIDA ABD AZIZ1, NURUL AKIDAH BAHARUDDIN1,*, MAHENDRA
RAO SOMALU1, ANDANASTUTI MUCHTAR1,2 & SAHRIM
HAJI AHMAD3
1Solid
Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department
of Mechanical & Manufacturing Engineering, Faculty of Engineering &
Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
3Department of Applied Physics, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul
Ehsan, Malaysia
Diserahkan: 31 Januari
2022/Diterima: 20 Mac 2023
Abstrak
Kesan
suhu sinter ke atas sifat bahan seramik perovskit SrFe0.9Ti0.1O3-δ-SDC
dikaji di dalam penyelidikan ini. Pada asasnya, proses sinter dilakukan bagi
memperkecilkan keliangan di dalam sesuatu bahan yang telah dipadatkan. Melalui
kajian ini, tiga suhu digunakan untuk mengkaji kesan suhu sinter iaitu 1200,
1250, 1300 °C. Bahan seramik yang diperbuat daripada SDC terlebih dahulu
dibentuk menjadi sel butang dengan mengenakan tekanan ekapaksi 5.2MPa. Dakwat
seramik 5SrFe0.9Ti0.1O3-δ-5SDC dicetak ke
atas kedua-dua permukaan sel butang bagi menghasilkan sel simetri elektrod/elektrolit/elektrod.
Kesemua sel ini dibakar dengan 3 suhu sinter yang berbeza. Sifat fizikal dan
morfologinya dikaji. Hasil kajian ini mendapati sel simetri yang dikenakan suhu
yang berbeza mempengaruhi sifat bahan tersebut. Kenaikan suhu sinter menyebabkan
bahan menjadi semakin aglomerat dan keliangan semakin berkurang sehingga
24.38%. Ketumpatan bahan juga semakin meningkat dan menyebabkan
bahan mudah patah. Ketahanan bahan berkurang dengan kenaikan suhu. Dalam kajian
ini, bahan 5SrFe0.9Ti0.1O3‒δ-5SDC didapati
sesuai disinter pada suhu 1250 °C kerana memberikan nilai keliangan, kadar
penggumpalan, ketumpatan dan dan ketahanan yang baik pada ketika itu.
Kata kunci: Kekerasan; mikrostruktur; pensinteran;
perovskit; seramik
Abstract
Sintering
temperature effects on perovskite ceramic SrFe0.9Ti0.1O3-δ-SDC
was investigated in this research. A fact that the sintering process was
carried out to reduce the porosity in the materials that have been pressed.
Three different temperatures used in this research range from 1200, 1250, and
1300 °C. The button cell was developed from the ceramic material SDC with 5MPa
pressure. 5SrFe0.9Ti0.1O3-δ-5SDC ink was
printed on top of the button cell on each side to build a symmetrical cell with
a configuration electrode/electrolyte/electrode. All symmetrical cells were
sintered at 3 different temperatures. Physical and morphology were studied. It
was found that symmetrical cells with different sintering temperatures show a
different character. The porosity tends to decrease up to 24.38% with the
increase of sintering temperature, therefore, increasing the agglomeration and
decreasing the strength of the materials. In this study, the material 5SrFe0.9Ti0.1O3‒δ-5SDC is suitable to sinter
at 1250 °C and gives the best porosity, aggregation rate, and density while
providing a good endurance.
Keywords:
Ceramic; hardness; microstructure; perovskite; sintering
RUJUKAN
Abd.Rahman, H.
& Yacob, D. 2008. Effect of Double
Sintering on the Properties of Porous Ceramic. https://www.researchgate.net/publication/277798322_Effect_of_double_sintering_on_the_properties_of_porous_ceramic
Abdul
Rahman, N.F., Yusop, U.A., Lowrance, Y.N., Abd. Rahman, H. Azmi, M.A., Mahzan,
S. & Ismail, A. 2022. Formulation and characterisation of LSCF/YSZ-SDC and
LSCF/YSZ-SDCC dual composite cathodes for intermediate- temperature solid oxide
fuel cell. Malaysian Journal of Analytical Sciences 26(3): 600-612.
Abd
Aziz, A.J., Baharuddin, N.A., Somalu, M.R. & Muchtar, A. 2020. Review of
composite cathodes for intermediate-temperature solid oxide fuel cell
applications. Ceramics International 46(15): 23314-23325.
Abdul
Samat, A., Rao Somalu, M., Muchtar, A., Akidah Baharuddin, N. & Osman, N.
2019. Optimisation of screen-printed La0.6Sr0.4CoO3-δ cathode film for intermediate temperature proton-conducting solid oxide fuel
cell application. IOP Conference Series: Earth and Environmental Science 268(1): 012137.
Aydın,
B., Pamir, T., Baltaci, A., Orman, M.N. & Turk, T. 2015. Effect of storage
solutions on microhardness of crown enamel and dentin. European Journal of
Dentistry 9(2): 262-266.
Azreen
Junaida Abd Aziz, Nurul Akidah Baharuddin, Mahendra Rao Somalu & Andanastuti
Muchar. 2022. Layering optimization of the SrFe0.9Ti0.1O3−δ–Ce0.8Sm0.2O1.9 composite cathode. Molecules 27(8): 2549.
Baharuddin,
N.A., Muchtar, A. & Somalu, M.R. 2017a. Preparation of SrFe0.5Ti0.5O3−δ perovskite-structured ceramic using the glycine-nitrate combustion
technique. Materials Letters 194:
197-201.
Baharuddin,
N.A., Muchtar, A. & Somalu, M.R. 2017b. Short review on cobalt-free
cathodes for solid oxide fuel cells. International Journal of Hydrogen
Energy 42: 9149-9155.
Baharuddin,
N.A., Muchtar, A., Somalu, M.R., Kalib, N.S. & Raduwan, N.F. 2019.
Synthesis and characterization of cobalt-free SrFe0·8Ti0·2O3-δ cathode powders synthesized through combustion method for solid oxide fuel
cells. International Journal of Hydrogen Energy 44(58): 30682-30691.
Baharuddin,
N.A., Somalu, M.R., Anwar, M., Ali, M., Abdul, S., Abdul, K. & Joelle, H.
2018. Effects of sintering temperature on the structural and electrochemical
properties of SrFe0.5Ti0.5O3-d perovskite
cathode. International Journal of Applied Ceramic Technology 15: 338-348.
Baharuddin,
N.A., Muchtar, A., Rao Somalu, M., Sulong, A.B. & Abdullah, H. 2016.
Pengaruh suhu sinter terhadap prestasi elektrokimia katod komposit sel bahan. Sains
Malaysiana 45(3): 459-465.
Bandopadhyay,
S. & Nagabhushana, N. 2003. Crack Growth Analysis of Solid Oxide Fuel cell
Electrolytes. United States. https://doi.org/10.2172/822680
Billemar,
J. 2014. How anode porosity affects the performance of a solid oxide fuel cell.
Chalmers University of Technology, Goteborg, Sweden (Unpublished).
Chen,
X., Wang, J., Liang, Q., Sun, X., Zhu, X., Zhou, D. & Meng, J. 2020. Pr2NiO4-Pr0.2Ce0·8O1.9 composite cathode as a potential cathode material for intermediate temperature
solid oxide fuel cells. Solid State Sciences 100: 106108.
De
Jonghe, L.C. & Rahaman, M.N. 2003. 4.1 Sintering of ceramics. Handbook
of Advanced Ceramics: Materials, Applications, Processing and Properties 1-2: 187-264.
Fan,
X., Case, E.D., Yang, Q. & Nicholas, J.D. 2013. Room temperature hardness
of gadolinia-doped ceria as a function of porosity. Journal of Materials
Science 48(20): 6977-6985.
Flura,
A., Nicollet, C., Fourcade, S., Vibhu, V., Rougier, A., Bassat, J.M. &
Grenier, J.C. 2015. Identification and modelling of the oxygen gas diffusion
impedance in SOFC porous electrodes: Application to Pr2NiO4+δ. Electrochimica
Acta 174: 1030-1040.
He,
W., Zou, J., Wang, B., Vilayurganapathy, S., Zhou, M., Lin, X., Zhang, K.H.L.,
Lin, J., Xu, P. & Dickerson, J.H. 2013. Gas transport in porous electrodes
of solid oxide fuel cells: A review on diffusion and diffusivity measurement. Journal
of Power Sources 237: 64-73.
Lee,
W.E. 1996. Ceramic processing and sintering. International Materials Reviews 41(1): 36-37.
Mahato,
N., Sharma, S., Keshri, A.K., Simpson, A., Agarwal, A. & Balani, K. 2013.
Nanomechanical properties and thermal conductivity estimation of
plasma-sprayed, solid-oxide fuel cell components: Ceria-doped,
yttria-stabilized zirconia electrolyte. The Journal of The Minerals, Metals
& Materials Society 65(6): 749-762.
Mangalaraja,
R.V., Ananthakumar, S., Schachtsiek, A., López, M., Camurri, C.P. & Avila,
R.E. 2010. Synthesis and mechanical properties of low temperature sintered, Sm3+ doped nanoceria electrolyte membranes for IT-SOFC applications. Materials
Science and Engineering: A 527(16-17): 3645-3650.
Nurhayati,
S., Syarif, D.G. & Setiawan, A. 2013. Pengaruh suhu sinter terhadap
karakteristik keramik calsia stabilized zirconia dengan penambahan natrium
karbonat untuk elektrolit padat. Indonesian Journal of Materials Science 14(2): 99-102.
Rahaman,
M.N. 2013. Sintering of Ceramics. 1st ed. Boca Raton: CRC Press.
Ramadhani,
F., Hussain, M.A., Mokhlis, H. & Hajimolana, S. 2017. Optimization
strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey. Renewable
and Sustainable Energy Reviews 76: 460-484.
Shaikh,
S.P.S., Somalu, M.R. & Muchtar, A. 2016. Nanostructured Cu-CGO anodes
fabricated using a microwave-assisted glycine-nitrate process. Journal of
Physics and Chemistry of Solids 98: 91-99.
Shamsudin,
Z., Mesri, M., Hasan, R., Mustafa, Z., Mohamad Juoi, J., Kejuruteraan
Pembuatan, F. & Kejuruteraan Mekanikal, F. 2020. Effect of sintering
temperature on physical properties of sintered green glass ceramic composite
(GCC). Proceedings of Mechanical Engineering Research Day 2020. pp.
89-91.
Tahir,
N.N.M., Baharuddin, N.A., Samat, A.A., Osman, N. & Somalu, M.R. 2021. A
review on cathode materials for conventional and proton-conducting solid oxide
fuel cells. Journal of Alloys and Compounds 894: 162458.
Tang,
Q. & Gong, J. 2013. Effect of porosity on the microhardness testing of
brittle ceramics: A case study on the system of NiO–ZrO2. Ceramics
International 39(8): 8751-8759.
Tekeli,
S. & Gürü, M. 2007. Indentation fracture toughness and hardness of solid
oxide fuel cell electrolyte material. Key Engineering Materials 336-338:
2418-2421.
Toby,
B.H. 2006. R factors in Rietveld analysis: How good is good enough? Powder
Diffraction 21(1): 67-70.
Wincewicz,
K.C. & Cooper, J.S. 2005. Taxonomies of SOFC material and manufacturing
alternatives. Journal of Power Sources 140(2): 280-296.
Yu,
X., Fan, J. & Xue, L. 2014. Performance optimization of SrFe0.95Ti0.05O3-δ cathode for intermediate temperature SOFC. Ceramics International 40(8): 13627-13634.
Yuan,
X., Qu, X., Yin, H., Feng, Z., Tang, M., Yan, Z. & Tan, Z. 2021. Effects of
sintering temperature on densification, microstructure and mechanical
properties of al-based alloy by high-velocity compaction. Metals 11(2): 218.
*Pengarang untuk surat-menyurat; email:
akidah@ukm.edu.my
|