Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1243 - 1249

 

 

 

PRELIMINARY STUDY OF NATURAL PIGMENTS PHOTOCHEMICAL PROPERTIES OF Curcuma longa L. AND Lawsonia inermis L.

AS TiO2 PHOTOELECTRODE SENSITIZER

 

(Kajian Awal Sifat Fotokimia Bahan Warna Semulajadi Curcuma longa L. dan Lawsonia inermis L.  Sebagai Pemeka Fotoelektrod TiO2)

 

Nur Ezyanie Safie1,  Norasikin Ahmad Ludin1*, Mohd Sukor Su’ait1, Norul Hisham Hamid2, Suhaila Sepeai1, Mohd Adib Ibrahim1, Mohd Asri Mat Teridi1

 

1Solar Energy Research Institute (SERI),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Faculty of Forestry,

Universiti Putra Malaysia, 43300 UPM Serdang,  Selangor, Malaysia

 

*Corresponding author: sheekeen@ukm.edu.my

 

 

Received: 20 March 2015; Accepted: 29 September 2015

 

 

Abstract

Curcumin and lawsone dyes extracted from turmeric (Curcuma longa L.) and henna (Lawsonia inermis L.) are used to investigate their possibility as photosensitizers on a TiO2 photoelectrode, respectively. The natural dyes undergo simple cold extraction techniques without further purification. The photochemical properties are studied by FT-IR spectroscopy and UV-Vis spectrophotometer. The FTIR spectra revealed that the presence of hydroxyl and carbonyl functional groups in both dyes indicated the presence of important characteristics in a sensitizer to graft on to TiO2 photoelectrode. The broad range of absorption peak wavelength obtained in this work shows that curcumin and lawsone are promising candidates for efficient sensitizers in dye-sensitized solar cells (DSSC). The maximum absorption peak attributed for curcumin and lawsone are 425 nm and 673 nm. The optical bandgaps calculated are 2.48 eV and 1.77 eV, respectively. The findings indicated the potential of naturally obtained dyes to act as photosensitizers in DSSC.

 

Keywords: curcumin, lawsone, natural photosensitizer, DSSC, optical band gap

 

Abstrak

Kurkumin dan lawson adalah pigmen pewarna yang diekstrak daripada kunyit (Curcuma longa L.) dan inai (Lawsonia inermis L.) digunakan untuk mengkaji kebarangkalian sebagai pemeka cahaya pada TiO2 fotoelektrod. Pewarna semula jadi ini diekstrak menggunakan teknik rendaman sejuk tanpa penulenan lanjut. Sifat fotokimia dikaji menggunakan spektroskopi FT-IR dan spektrofotometer UV-Vis. Spektrum FTIR mendedahkan bahawa kehadiran kumpulan berfungsi hidroksil dan karbonil dalam kedua-dua pewarna menunjukkan kehadiran ciri-ciri penting dalam pemeka untuk melekat pada TiO2 fotoelektrod. Lebar luas puncak penyerapan gelombang yang diperolehi dalam kajian ini menunjukkan kurkumin dan lawson adalah pigmen pewarna yang berpotensi untuk menjadi pemeka yang berkesan dalam DSSC. Puncak penyerapan maksimum untuk kurkumin dan lawson adalah 425 nm dan 673 nm. Jurang jalur optik dikira masing-masing adalah 2.48 eV dan 1.77 eV. Dapatan kajian menunjukkan potensi pewarna yang diperolehi secara semulajadi untuk bertindak sebagai pemeka cahaya dalam DSSC.

 

Kata kunci: kurkumin, lawson, pemeka cahaya semulajadi, DSSC, jurang jalur optik

 

References

1.       Würfel, P. and Würfer, U. (2009). Physics of Solar Cells: From Basic Principles to Advanced Concepts. 2nd ed. Weinhem, Germany: John Wiley & Sons.

2.       Kong, F-T., Dai, S-Y. and Wang, K-J. (2007). Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics 75384: 1-13.

3.       Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K. and Arakawa, H. (2003). Design of New Coumarin Dyes Having Thiophene Moieties for Highly Efficient Organic-Dye-Sensitized Solar Cells. New Journal of Chemistry 27(5): 783-785.

4.       Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H. and Arakawa, H. (2003). Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 107: 597-606.

5.       Liu, B., Wang, R., Mi, W., LI, X. and Yu, H. (2012). Novel Branched Coumarin Dyes for Dye-Sensitized Solar Cells: Significant Improvement in Photovoltaic Performance by Simple Structure Modification. Journal of Materials Chemistry 22: 15379-15387.

6.       Zafer, C., Kus, M., Turkmen, G., Dincalp, H., Demic, S., Kuban, B., Teoman, Y. and Ieli, S. (2007). New Perylene Derivative Dyes for Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells 91: 427-431.

7.       Cappel, U.B., Karlsson, M.H., Pschirer, N.G., Eickemeyer, F., Schnöneboom, J., Erk, P., Boschloo, G. and Hagfeldt, A. (2009). A Broadly Absorbing Perylene Dye for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 113: 14595-14597.

8.       Kalyanasundaram, K. and Grätzel, M. (2009). Efficient Dye-Sensitized Solar Cells for Direct Conversion of Sunlight to Electricity. Material Matters 4(4): 88 - 90.

9.       Hagfeldt A., Boschloo, G., Sun, L. C., Kloo, L. and Pettersson, H. (2010). Dye-Sensitized Solar Cells. Chemical Reviews 110(11): 6595-6663.

10.    Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.g., Yeh, C.Y., Zakeeruddin, S.M and Grätzel, M. (2011). Porphyrin –Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 334 (6056): 629-634.

11.    Ginbabu, L. and Kanapathi, R.K. (2013). Are Prophyrins An Aternative to Ruthenium (II) Sensitizers for Dye-Sensitized Solar Cells? Current Science 104: 847-855.

12.    Hagfeldt, A. and Grätzel, M. (2000).  Molecular Photovoltaics. Accounts of Chemical Research 3395: 269-277.

13.    Wang, P., Klein, C., Humphry-Baker, R., Zakeeruddin, S. M. and Grätzel, M. (2005). A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. Journal of the American Chemical Society, 127: 808–809.

14.    Nazeeruddin, M. K., Péchy, P., Renouard, T., Zakeeruddin, S. M., Humphry-Baker, R., Cointe, P., and Liska, P. (2001). Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 123: 1613–1624.

15.    Dweck, A. C. (2002). Natural ingredients for colouring and styling. International Journal of Cosmetic Science, 24: 287–302.

16.    Kolev, T. M., Velcheva, E., Stamboliyska, B and Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry, 102: 1069–1079.

17.    Kumara, N. T. R. N., Ekanayake, P., Lim, A., Liew, L. Y. C., Iskandar, M., Ming, L. C. and Senadeera, G. K. R. (2013). Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells. Journal of Alloys and Compounds, 581: 186–191

18.    Kim, H. J., Kim, D. J., Karthick, S. N., Hemalatha, K. V., Justin Raj, C., Ok, S. and Choe, Y. (2013). Curcumin dye extracted from Curcuma longa L. used as sensitizers for efficient dye-sensitized solar cells. International Journal of Electrochemical Science, 8: 8320–8328.

19.    Ananth, S., Vivek, P., Arumanayagam, T. and Murugakoothan, P. (2014). Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 128: 420–426.

20.    Hemalatha, K. V., Karthick, S. N., Justin Raj, C., Hong, N. Y., Kim, S. K. and Kim, H. J. (2012). Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 96: 305–309.

21.    Narayan, M. R. (2011). Review: Dye sensitized solar cells based on natural photosensitizers. Renewable and Sustainable Energy Reviews, Renewable and Sustainable Energy Reviews, 16: 208-215.

22.    Calogero, G., Citro, I., Di Marco, G., Armeli Minicante, S., Morabito, M. and Genovese, G. (2014). Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 117: 702–706.

23.    Lim, A., Manaf, N. H., Tennakoon, K., Chandrakanthi, R. L. N., Biaw, L., Lim, L., Bandara, J. M. R. S. (2015). Higher Performance of DSSC with Dyes from Cladophora sp. as Mixed Cosensitizer through Synergistic Effect. Journal of Biophysics: 1-8.

24.    Reddy, K. M., Manorama, S. V. and Reddy, A. R. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78: 239–245

25.    Mir, N. and Salavati-Niasari, M. (2012). Photovoltaic properties of corresponding dye sensitized solar cells: Effect of active sites of growth controller on TiO 2 nanostructures. Solar Energy, 86(11): 3397–3404.

 




Previous                    Content                    Next